Compare commits

..

8 Commits

Author SHA1 Message Date
eneller
c1541c693a doc: show screenshots in readme 2026-01-22 00:37:47 +01:00
eneller
1ab649f25f doc: minor tweaks 2026-01-21 22:42:00 +01:00
eneller
137ddb197b doc: include screenshots 2026-01-21 22:31:12 +01:00
eneller
5d129f1498 doc: finalize report 2026-01-21 22:21:24 +01:00
eneller
010345ae03 move doc 2026-01-21 16:02:00 +01:00
eneller
595388e413 build: add webshot for pdf screenshots 2026-01-21 15:57:57 +01:00
eneller
20270f5816 Create Web UI using shiny
commit 3de1345642
Merge: 9106db3 f4955af
Author: eneller <erikneller@gmx.de>
Date:   Wed Jan 21 15:14:32 2026 +0100

    Merge branch 'feat/trajectories-and-alternative-gui' into feat/add-osm-for-trajectory

commit 9106db35a9
Author: eneller <erikneller@gmx.de>
Date:   Wed Jan 21 15:13:28 2026 +0100

    build: lock renv

commit f4955af7f4
Author: eneller <erikneller@gmx.de>
Date:   Wed Jan 21 13:13:23 2026 +0100

    build: exclude demo chunks from purl

commit 2757a86383
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Wed Jan 21 13:12:34 2026 +0100

    🐛 add getAircraftTrajectories function

commit 133827c2bd
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Wed Jan 21 12:54:03 2026 +0100

    add interactive map with leaflet

commit a7aa5025ea
Merge: 74292bd 93f4e3e
Author: eneller <erikneller@gmx.de>
Date:   Wed Jan 21 12:22:42 2026 +0100

    Merge remote-tracking branch 'refs/remotes/origin/feat/trajectories-and-alternative-gui' into feat/trajectories-and-alternative-gui

commit 93f4e3e81d
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Wed Jan 21 00:21:50 2026 +0100

    📝 add more documentation

commit 74292bd0ec
Merge: ec51069 86a9e41
Author: eneller <erikneller@gmx.de>
Date:   Wed Jan 21 00:09:16 2026 +0100

    Merge remote-tracking branch 'origin/feat/trajectories-and-alternative-gui' into feat/trajectories-and-alternative-gui

commit ec51069f1d
Author: eneller <erikneller@gmx.de>
Date:   Tue Jan 20 23:49:51 2026 +0100

    wip: fix: trajectory stats for single aircraft

commit 86a9e4163f
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Tue Jan 20 23:36:07 2026 +0100

    🐛 fixed the credentials bug for documentation

commit 387e1caa7f
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Tue Jan 20 23:10:08 2026 +0100

    📝 add documentation to main

commit 696f52eda3
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Tue Jan 20 16:53:19 2026 +0100

    ♻️ refactor all logic to main.rmd

commit eb49746268
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Tue Jan 20 16:13:41 2026 +0100

    🩹 fix small issues in main

commit f491345ea0
Author: eneller <erikneller@gmx.de>
Date:   Tue Jan 20 15:46:26 2026 +0100

    refactor: consolidate main.Rmd statistics

commit aacdc12638
Author: lukasadrion <lukas.adrion@uni-ulm.de>
Date:   Tue Jan 20 15:31:21 2026 +0100

    ♻️ refactor app.Rmd

commit e4c7ce4977
Author: eneller <erikneller@gmx.de>
Date:   Tue Jan 20 13:48:49 2026 +0100

    chore: move app from R to Rmd

commit d9a33a5d2b
Author: eneller <erikneller@gmx.de>
Date:   Mon Jan 19 17:45:35 2026 +0100

    build: add dependencies

commit d8dd920d6b
Author: Patrik M <57401452+Patrik157@users.noreply.github.com>
Date:   Mon Jan 19 17:25:18 2026 +0100

    Added trajectories and alternative GUI
2026-01-21 15:38:17 +01:00
eneller
e2699640ca doc: slides 2026-01-20 18:10:55 +01:00
10 changed files with 1920 additions and 60 deletions

View File

@@ -14,6 +14,12 @@ Develop an R-based software, which will perform the following tasks:
6. In the final project report, describe the problem, describe the method and the developed software support in the R environment, present and interpret the results, and form a conclusion.
## Demo
![Departures View](doc/web-departures.png)
![Single Flight View](doc/web-single.png)
![Statistics View](doc/web-stats.png)
![Interpretation View](doc/web-interpretation.png)
## Resources
1. [The OpenSky Network. (2025). Internet archive of observed aircraft trajectories.](https://opensky-network.org/datasets/states/)

View File

@@ -23,11 +23,22 @@ Develop an R-based software, which will perform the following tasks:
## Methodology
1. acquire data using the OpenSky API
1. acquire data using the OpenSky API bindings in the `openSkies` R package
2. use
2. use `tcltk` and `shiny` for GUI and Web Interface
3. show an interactive map using leaflet
4. calculate required parameters using `trajr`
5. calculate descriptive statistics
## Contribution
- extended functionality of the `openSkies` R package and created a merge request
- extended functionality of the `openSkies` R package and created a merge request in the original repository
- created a web app to display stats, density functions and boxplots
---
![web interface](web-single.png)

BIN
doc/web-departures.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 202 KiB

BIN
doc/web-interpretation.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

BIN
doc/web-single.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 433 KiB

BIN
doc/web-stats.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

BIN
doc/web-stats_full.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 340 KiB

994
renv.lock

File diff suppressed because it is too large Load Diff

301
src/app.Rmd Normal file
View File

@@ -0,0 +1,301 @@
```{r backend, include=FALSE}
# Load all functions from main.Rmd
knitr::purl("./main.Rmd", output = tempfile(), quiet = TRUE) |> source()
```
# Web Interface
```{r shiny}
# Flight Trajectory Analysis - Shiny GUI Application
# This app allows interactive selection of flights and displays trajectory analysis
# All core functions are loaded from main.Rmd
# UI Definition
ui <- fluidPage(
titlePanel("Flight Trajectory Analysis - GUI"),
sidebarLayout(
sidebarPanel(
width = 3,
h4("OpenSky Credentials"),
textInput("client_id", "Client ID:", value = Sys.getenv('OPENSKY_CLIENT_ID')),
passwordInput("client_secret", "Client Secret:", value = Sys.getenv('OPENSKY_CLIENT_SECRET')),
hr(),
h4("Airport Selection"),
textInput("airport_code", "Airport ICAO Code:", value = "EDDF"),
sliderInput("hours_back", "Hours back from now:", min = 1, max = 12, value = 1),
actionButton("load_departures", "Load Departures", class = "btn-primary"),
hr(),
h4("Flight Selection"),
selectInput("selected_flight", "Select Flight:", choices = NULL),
actionButton("analyze_flight", "Analyze Selected Flight", class = "btn-success"),
hr(),
h4("Batch Analysis"),
numericInput("batch_size", "Days of flights to analyze:", value = 5, min = 1, max = 30),
actionButton("batch_analyze", "Run Batch Analysis", class = "btn-warning"),
hr(),
verbatimTextOutput("status_text")
),
mainPanel(
width = 9,
tabsetPanel(
id = "main_tabs",
tabPanel("Departures List",
h4("Available Departures"),
tableOutput("departures_table")
),
tabPanel("Single Flight Analysis",
fluidRow(
column(6, leafletOutput("route_plot", height = "400px")),
column(6, plotOutput("altitude_plot", height = "400px"))
),
fluidRow(
column(6, plotOutput("trajectory_plot", height = "400px")),
column(6,
h4("Trajectory Characteristics"),
tableOutput("characteristics_table"))
)
),
tabPanel("Statistical Analysis",
h4("Multiple Trajectory Statistics"),
tableOutput("stats_summary_table"),
hr(),
fluidRow(
column(12, plotOutput("boxplots", height = "500px"))
),
fluidRow(
column(12, plotOutput("density_plots", height = "500px"))
),
fluidRow(
column(12, plotOutput("histograms", height = "500px"))
)
),
tabPanel("Interpretation",
h4("Analysis Interpretation"),
verbatimTextOutput("interpretation_text")
)
)
)
)
)
# Server Logic
server <- function(input, output, session) {
# Reactive values to store data
rv <- reactiveValues(
creds = NULL,
departures = NULL,
departures_df = NULL,
current_route = NULL,
current_trj = NULL,
current_icao = NULL,
trajectory_stats_df = NULL
)
# Status message
status <- reactiveVal("Ready. Enter credentials and load departures.")
output$status_text <- renderText({
status()
})
# Load departures
observeEvent(input$load_departures, {
req(input$client_id, input$client_secret, input$airport_code)
status("Loading departures...")
tryCatch({
# Use getCredentials from main.Rmd
rv$creds <- getCredentials(
client_id = input$client_id,
client_secret = input$client_secret
)
time_now <- Sys.time()
rv$departures <- getAirportDepartures(
airport = input$airport_code,
startTime = time_now - hours(input$hours_back),
endTime = time_now,
credentials = rv$creds
)
if (length(rv$departures) > 0) {
# Create departures dataframe for display
departures_list <- lapply(seq_along(rv$departures), function(i) {
dep <- rv$departures[[i]]
data.frame(
Index = i,
ICAO24 = dep[["ICAO24"]] %||% NA,
#FIXME Callsign, Origin, Destination
Callsign = dep[["callsign"]] %||% NA,
Origin = dep[["estDepartureAirport"]] %||% NA,
Destination = dep[["estArrivalAirport"]] %||% NA,
DepartureTime = as.POSIXct(dep[["departure_time"]] %||% NA, origin = "1970-01-01"),
stringsAsFactors = FALSE
)
})
rv$departures_df <- do.call(rbind, departures_list)
# Update flight selection dropdown
choices <- setNames(
seq_along(rv$departures),
paste(rv$departures_df$ICAO24, "-", rv$departures_df$Callsign,
"(", rv$departures_df$Destination, ")")
)
updateSelectInput(session, "selected_flight", choices = choices)
status(paste("Loaded", length(rv$departures), "departures from", input$airport_code))
} else {
status("No departures found for the selected time period.")
}
}, error = function(e) {
status(paste("Error loading departures:", e$message))
})
})
# Display departures table
output$departures_table <- renderTable({
req(rv$departures_df)
rv$departures_df
})
# Analyze selected flight
observeEvent(input$analyze_flight, {
req(rv$departures, input$selected_flight, rv$creds)
status("Analyzing selected flight...")
tryCatch({
idx <- as.integer(input$selected_flight)
dep <- rv$departures[[idx]]
icao24 <- dep[["ICAO24"]]
dep_time <- dep[["departure_time"]]
rv$current_icao <- icao24
# Use getAircraftTrack from main.Rmd
route_df <- getAircraftTrack(icao24, dep_time, rv$creds)
if (is.null(route_df) || nrow(route_df) < 2) {
status(paste("No path data available for", icao24))
return()
}
rv$current_route <- route_df
# Use getTrajFromRoute from main.Rmd
rv$current_trj <- getTrajFromRoute(route_df)
status(paste("Successfully analyzed", icao24, "with", nrow(route_df), "points"))
# Switch to analysis tab
updateTabsetPanel(session, "main_tabs", selected = "Single Flight Analysis")
}, error = function(e) {
status(paste("Error analyzing flight:", e$message))
})
})
# Route plot
output$route_plot <- renderLeaflet({
req(rv$current_route)
createInteractiveMap(rv$current_route)
})
# Altitude plot
output$altitude_plot <- renderPlot({
req(rv$current_route)
plot(rv$current_route$time, rv$current_route$alt, type = "l", col = "red", lwd = 2,
main = paste("Altitude Profile of", rv$current_icao),
xlab = "Time (Unix)", ylab = "Altitude (m)")
})
# Trajectory plot
output$trajectory_plot <- renderPlot({
req(rv$current_trj)
plot(rv$current_trj, main = paste("Trajectory of", rv$current_icao))
})
# Characteristics table
output$characteristics_table <- renderTable({
req(rv$current_trj)
calculateTrajectoryStats(rv$current_trj, format = "table")
})
# Batch analysis
observeEvent(input$batch_analyze, {
req(rv$departures, rv$creds)
status("Running batch analysis...")
tryCatch({
withProgress(message = 'Analyzing flights', value = 0, {
all_trajectories <- getAircraftTrajectories(rv$current_icao, time = Sys.time(), creds, days = input$batch_size)
})
if (length(all_trajectories) > 0) {
rv$trajectory_stats_df <- do.call(rbind, all_trajectories)
status(paste("Batch analysis complete:", nrow(rv$trajectory_stats_df), "trajectories analyzed"))
updateTabsetPanel(session, "main_tabs", selected = "Statistical Analysis")
} else {
status("No trajectory data collected in batch analysis")
}
}, error = function(e) {
status(paste("Error in batch analysis:", e$message))
})
})
# Statistics summary table - use calculateStatsSummary from main.Rmd
output$stats_summary_table <- renderTable({
req(rv$trajectory_stats_df)
calculateStatsSummary(rv$trajectory_stats_df)
})
# Boxplots - use createBoxplots from main.Rmd
output$boxplots <- renderPlot({
req(rv$trajectory_stats_df)
createBoxplots(rv$trajectory_stats_df)
})
# Density plots - use createDensityPlots from main.Rmd
output$density_plots <- renderPlot({
req(rv$trajectory_stats_df)
createDensityPlots(rv$trajectory_stats_df)
})
# Histograms - use createHistograms from main.Rmd
output$histograms <- renderPlot({
req(rv$trajectory_stats_df)
createHistograms(rv$trajectory_stats_df)
})
# Interpretation text - use generateInterpretation from main.Rmd
output$interpretation_text <- renderText({
req(rv$trajectory_stats_df)
generateInterpretation(rv$trajectory_stats_df)
})
}
# Run the application
shinyApp(ui = ui, server = server)
```

View File

@@ -1,5 +1,5 @@
---
title: "Topic 8"
title: "Topic 8 - Flight Trajectory Analysis"
output:
pdf_document: default
html_document: default
@@ -8,87 +8,635 @@ date: "`r Sys.Date()`"
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
# include `eval=isArtifact()` to check if pdf/html is being produced
isArtifact <- function(){
isOutput <-knitr::is_html_output() || knitr::is_latex_output()
return(isOutput)
}
```
# Abstract
This project implements an R-based application for the retrieval, processing, and statistical analysis of aircraft trajectories. Flight data is obtained from the OpenSky Network API, transformed into analyzable trajectory objects using the `trajr` package, and subsequently characterized using established movement ecology metrics. The methodology enables quantitative comparison of flight paths through parameters such as path length, straightness index, and fractal dimension.
# Introduction
## Background
The analysis of movement trajectories constitutes a fundamental aspect of spatial data science, with applications ranging from animal behavior studies to transportation network optimization. In the context of aviation, trajectory analysis provides insights into flight efficiency, airspace utilization, and routing patterns.
## Objectives
The primary objectives of this project are:
1. **Data Acquisition**: Implement robust methods for retrieving real-time flight trajectory data from the OpenSky Network
2. **Trajectory Characterization**: Apply established metrics from movement ecology to quantify flight path properties
3. **Statistical Analysis**: Perform comparative analysis across multiple flights to identify patterns and distributions
## Theoretical Framework
The `trajr` package, originally developed for animal movement analysis, provides a comprehensive toolkit for trajectory characterization. Key metrics employed in this analysis include:
- **Path Length**: Total distance traveled along the trajectory
- **Diffusion Distance**: Euclidean displacement from origin to destination
- **Straightness Index**: Ratio of diffusion distance to path length (range 0-1)
- **Fractal Dimension**: Measure of path complexity (1 = straight line, approaching 2 = space-filling curve)
# Methodology
## Data Source
Flight trajectory data is obtained from the OpenSky Network, a community-based receiver network providing open access to air traffic surveillance data. The API provides:
- Aircraft state vectors (position, velocity, heading)
- Historical flight tracks
- Airport departure and arrival information
## Data Processing Pipeline
The analysis workflow consists of the following stages:
1. **Authentication**: Establish connection to OpenSky API using credentials
2. **Data Acquisition**: Retrieve departure information for specified airport and time window
3. **Track Retrieval**: Obtain detailed waypoint data for individual flights
4. **Coordinate Transformation**: Convert geographic coordinates to metric distances
5. **Trajectory Construction**: Create `trajr` trajectory objects for analysis
6. **Statistical Computation**: Calculate trajectory metrics and aggregate statistics
## Libraries
The following libraries were included for convenience and backend handling.
The packages more central to the task, such as `openSkies` and `trajr` are explicitly mentioned in the text.
```{r preamble, message=FALSE}
# Load Libraries
library(dplyr)
library(lubridate)
library(readr)
library(utils)
library(openSkies)
library(dotenv)
library(httr)
library(jsonlite)
library(trajr)
library(shiny)
```
# Download flights
```{r opensky}
# Implementation
The following section will demonstrate the implementation of the methodology using R code snippets.
The full analysis is also available in the `shiny` web interface.
## API Authentication
Authentication with https://opensky-network.org/ was supposed to be provided by the `openSkies` R package.
The API provider however had deprecated username + password authentication for the API in 2025-03, leading us to first work with the
REST API manually.
While working on the manual API code, we however already forked the original package at [Rafael-Ayala/openSkies](https://github.com/Rafael-Ayala/openSkies)
to [eneller/openSkies](https://github.com/eneller/openSkies/) and made several
[changes](https://github.com/Rafael-Ayala/openSkies/issues/3) that were later included in a
[pull request](https://github.com/Rafael-Ayala/openSkies/pull/4).
Our contributions include refactoring and streamlining authenticated requests to use the `makeAuthenticatedRequest()` function used below
and store the token obtained by initial authentication in a `credentials` object obtained from the new `getCredentials()` function.
We further adjusted the front-facing functions to accept either _username + password_ or _client ID + secret_
where applicable using the new credentials object.
```{r auth, include=FALSE}
library(openSkies)
# Openskies API Functions
time_now <- Sys.time()
creds <- getCredentials(
client_id = Sys.getenv('OPENSKY_CLIENT_ID'),
client_secret = Sys.getenv('OPENSKY_CLIENT_SECRET'))
# get departures from Frankfurt airport
departures <- getAirportDepartures(airport = "EDDF", startTime = time_now - hours(1), endTime = time_now, credentials = creds )
```
## Data Acquisition
In the code below, the new `makeAuthenticatedRequests()` is also used to make requests to the `tracks/all` endpoint for which no
official function is provided by `openSkies` as that endpoint is still considered experimental at the time of writing.
We use this endpoint in `getAircraftTrack()` to obtain the track data that is used for all further trajectory calculations.
In order to request the track from the API, we first need to get a list of flights for an aircraft using
`openSkies::getAircraftFlights()` in our convenience function `getFlights()`.
```{r get-data}
# Get flights for a specific aircraft from OpenSky API
getFlights <- function(icao, time, creds){
flights <-getAircraftFlights(icao, startTime = time - days(1), endTime = time, credentials = creds )
return(flights)
}
icao <- departures[[1]][["ICAO24"]]
flights <- getFlights(icao,Sys.time(), creds)
# TODO map from all available flights to tracks
query <- list(icao24= icao, time=as.numeric(flights[[1]][["departure_time"]]))
# can get tracks for up to 30 days in the past
response <-makeAuthenticatedRequest('tracks/all',query, creds)
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
if (!is.null(track_data$path) && length(track_data$path) > 0) {
# Get aircraft track from OpenSky API
getAircraftTrack <- function(icao, time, creds) {
query <- list(icao24 = icao, time = as.numeric(time))
response <- makeAuthenticatedRequest('tracks/all', query, creds)
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
if (!is.null(track_data$path) && length(track_data$path) > 0) {
route_df <- as.data.frame(track_data$path)
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
message("Loading of route successfull! Points: ", nrow(route_df))
plot(route_df$lon, route_df$lat, type="o", pch=20, col="blue",
main=paste("Geographic route of", icao),
xlab="Longitude", ylab="Latitude")
plot(route_df$time, route_df$alt, type="l", col="red", lwd=2,
main=paste("Altitude profile of", icao),
xlab="Time (Unix)", ylab="Height (Meter)")
} else {
print("No path points from api")
return(route_df)
}
```
# GUI selection
```{r gui}
icaos <- lapply(departures, function(x) x[["ICAO24"]])
options <- unlist(icaos) # tcltk needs a character vector
# Create a GUI list selection
listSelect <- function(options){
selected_option <- NULL
tryCatch({
selected_option <- select.list(
title = "Select an aircraft",
choices = options,
preselect = NULL,
multiple = FALSE,
graphics = TRUE
)
}, error = function(w) {
message('No GUI available')
}
)
if (nzchar(selected_option)){
return(selected_option)
}
return(options[1])
return(NULL)
}
```
## Parameter Calculation
We then calculate several basic parameters from the route, such as time and distance, that are then used to
construct an object in `getTrajFromRoute()` that can later be used with `trajr`.
```{r trajectory-functions}
library(trajr)
# Trajectory Conversion Functions
# Convert route to distance in meters
getRouteDistance <- function(route_df) {
lat_ref <- route_df$lat[1]
lon_ref <- route_df$lon[1]
meters_per_deg_lat <- 111320
meters_per_deg_lon <- 111320 * cos(lat_ref * pi / 180)
x_meters <- (route_df$lon - lon_ref) * meters_per_deg_lon
y_meters <- (route_df$lat - lat_ref) * meters_per_deg_lat
return(list('x' = x_meters, 'y' = y_meters))
}
# Get time in seconds from start
getRouteTime <- function(route_df) {
return(route_df$time - route_df$time[1])
}
# Create trajr object from route
getTrajFromRoute <- function(route_df) {
meters <- getRouteDistance(route_df)
time <- getRouteTime(route_df)
trj <- TrajFromCoords(
data.frame(x = meters$x, y = meters$y, time = time),
xCol = "x", yCol = "y", timeCol = "time"
)
return(trj)
}
```
The altitude profile reveals distinct flight phases: climb, cruise, and descent. This temporal representation provides insight into vertical movement patterns.
```{r demo-altitude-plot, fig.width=7, fig.height=4, purl=FALSE, echo=FALSE}
time_now <- Sys.time()
departures <- getAirportDepartures(
airport = "EDDF",
startTime = time_now - hours(2),
endTime = time_now - hours(1),
credentials = creds
)
cat("Departures retrieved:", length(departures), "\n")
route_df <- NULL
icao <- "N/A"
if (length(departures) > 0) {
for (i in seq_along(departures)) {
icao <- departures[[i]][["ICAO24"]]
dep_time <- departures[[i]][["departure_time"]]
route_df <- getAircraftTrack(icao, dep_time, creds)
if (!is.null(route_df) && nrow(route_df) >= 3) {
cat("Aircraft ICAO24:", icao, "\n")
cat("Track points acquired:", nrow(route_df), "\n")
break
}
Sys.sleep(1)
}
}
if (!is.null(route_df)) {
time_minutes <- (route_df$time - route_df$time[1]) / 60
plot(time_minutes, route_df$alt, type = "l", col = "red", lwd = 2,
main = paste("Altitude Profile -", icao),
xlab = "Elapsed Time (min)", ylab = "Barometric Altitude (m)")
grid()
} else {
cat("Insufficient data for altitude analysis\n")
}
```
# Results
## Trajectory Metrics
For each obtained trajectory, we first calculate the following metrics:
duration, length, diffusion distance, straightness index, mean velocity and fractal dimension.
```{r trajectory-metrics}
# Calculate trajectory characteristics
# Input: either route_df (data.frame with lat/lon) or trj (trajr object)
# format: "row" for batch analysis (one row per flight), "table" for single flight display
calculateTrajectoryStats <- function(input, icao = NULL, format = "row") {
# Determine if input is route_df or trj
if (inherits(input, "Trajectory")) {
trj <- input
} else {
trj <- getTrajFromRoute(input)
}
# Calculate all metrics
duration <- TrajDuration(trj)
path_length <- TrajLength(trj)
diffusion_distance <- TrajDistance(trj)
straightness <- TrajStraightness(trj)
mean_velocity <- path_length / duration
fractal_dim <- tryCatch({
min_step <- path_length / 100
max_step <- path_length / 2
if (min_step > 0 && max_step > min_step) {
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
TrajFractalDimension(trj, stepSizes = step_sizes)
} else {
NA
}
}, error = function(e) NA)
# Return format based on use case
if (format == "table") {
# For single flight display (Parameter | Value)
return(data.frame(
Parameter = c(
"Duration (s)", "Duration (min)",
"Path Length (km)",
"Diffusion Distance (m)",
"Diffusion Distance (km)",
"Straightness Index",
"Mean Velocity (km/h)",
"Fractal Dimension"
),
Value = c(
round(duration, 2),
round(duration / 60, 2),
round(path_length / 1000, 2),
round(diffusion_distance, 2),
round(diffusion_distance / 1000, 2),
round(straightness, 4),
round(mean_velocity * 3.6, 2),
round(fractal_dim, 4)
)
))
} else {
# For batch analysis (one row per flight)
return(data.frame(
icao24 = icao,
diffusion_distance_km = diffusion_distance / 1000,
path_length_km = path_length / 1000,
straightness = straightness,
duration_min = duration / 60,
mean_velocity_kmh = mean_velocity * 3.6,
fractal_dimension = fractal_dim
))
}
}
# Calculate trajectory parameters for a single flight
calculate_trajectory_params <- function(icao, departure_time, creds) {
tryCatch({
route_df <- getAircraftTrack(icao, departure_time, creds)
if (is.null(route_df) || nrow(route_df) < 3) return(NULL)
return(calculateTrajectoryStats(route_df, icao = icao, format = "row"))
}, error = function(e) {
message("Error processing ", icao, ": ", e$message)
return(NULL)
})
}
getAircraftTrajectories <- function(icao, time, creds, days = 5){
tracks <- list()
for (i in 0: (days-1)) {
flights <- getFlights(icao,time - days(i),creds)
for (f in flights){
track <- calculate_trajectory_params(icao, f[["departure_time"]], creds)
if (!is.null(track)){
tracks[[length(tracks)+1]] <- track
}
Sys.sleep(0.5) # API courtesy
}
}
return(tracks)
}
```
```{r demo-multiple-tracks, purl=FALSE, echo=FALSE, include=FALSE}
flight_data <- list()
successful_flights <- 0
if (length(departures) > 0) {
max_attempts <- min(10, length(departures))
for (i in seq_len(max_attempts)) {
icao_temp <- departures[[i]][["ICAO24"]]
dep_time_temp <- departures[[i]][["departure_time"]]
route_df_temp <- getAircraftTrack(icao_temp, dep_time_temp, creds)
if (!is.null(route_df_temp) && nrow(route_df_temp) >= 3) {
stats <- calculateTrajectoryStats(route_df_temp, icao = icao_temp, format = "row")
if (!is.null(stats)) {
flight_data[[length(flight_data) + 1]] <- stats
successful_flights <- successful_flights + 1
cat("Flight", successful_flights, "| ICAO:", icao_temp,
"| Waypoints:", nrow(route_df_temp), "\n")
}
}
if (successful_flights >= 5) break
}
if (length(flight_data) > 0) {
all_flights_stats <- do.call(rbind, flight_data)
cat("\nSample size (n):", nrow(all_flights_stats), "flights\n")
} else {
all_flights_stats <- NULL
cat("No valid trajectories obtained\n")
}
} else {
all_flights_stats <- NULL
cat("No departure data available\n")
}
```
The following table presents computed metrics for all successfully analyzed flights.
```{r demo-all-stats-table, purl=FALSE, echo=FALSE}
# FIXME we should display several flights from the same aircraft as stated in the requirements
# not different aircraft's flights
if (!is.null(all_flights_stats)) {
display_stats <- all_flights_stats
display_stats$diffusion_distance_km <- round(display_stats$diffusion_distance_km, 2)
display_stats$path_length_km <- round(display_stats$path_length_km, 2)
display_stats$straightness <- round(display_stats$straightness, 4)
display_stats$duration_min <- round(display_stats$duration_min, 1)
display_stats$mean_velocity_kmh <- round(display_stats$mean_velocity_kmh, 1)
display_stats$fractal_dimension <- round(display_stats$fractal_dimension, 4)
knitr::kable(display_stats, caption = "Computed Trajectory Metrics",
col.names = c("ICAO24", "Displacement (km)", "Path Length (km)",
"Straightness", "Duration (min)", "Velocity (km/h)", "Fractal Dim."))
} else {
cat("No data available for tabulation\n")
}
```
## Trajectory Statistics
To enable statistical inference, trajectory data is collected for multiple flights.
We then calculate basic descriptive statistics for the metrics we obtained earlier,
such as
- mean
- median
- standard deviation
- interquartile range
```{r trajectory-summary}
getTrajectoryParams <- function() {
list(
params = c("diffusion_distance_km", "straightness", "duration_min",
"mean_velocity_kmh", "fractal_dimension"),
labels = c("Diffusion Distance (km)", "Straightness", "Duration (min)",
"Mean Velocity (km/h)", "Fractal Dimension")
)
}
# Calculate statistics summary table
calculateStatsSummary <- function(trajectory_stats_df) {
p <- getTrajectoryParams()
stats_list <- lapply(seq_along(p$params), function(i) {
x <- trajectory_stats_df[[p$params[i]]]
x <- x[!is.na(x)]
if (length(x) < 2) return(NULL)
data.frame(
Parameter = p$labels[i],
N = length(x),
Mean = round(mean(x), 1),
Variance = round(var(x), 1),
Std_Dev = round(sd(x), 1),
Q1 = round(quantile(x, 0.25), 1),
Median = round(median(x), 1),
Q3 = round(quantile(x, 0.75), 1)
)
})
do.call(rbind, stats_list[!sapply(stats_list, is.null)])
}
```
The `calculateStatsSummary()` function computes central tendency and dispersion measures for each trajectory parameter.
```{r demo-summary-stats, purl=FALSE, echo=FALSE}
# FIXME first table column broken
if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 2) {
summary_stats <- calculateStatsSummary(all_flights_stats)
knitr::kable(summary_stats, caption = "Descriptive Statistics Summary")
} else {
cat("Minimum sample size (n >= 2) not met\n")
}
```
## Visualisation
Boxplots provide a robust visualization of parameter distributions, displaying median, interquartile range, and potential outliers. The red diamond indicates the arithmetic mean.
```{r vis-boxplot}
createBoxplots <- function(trajectory_stats_df) {
p <- getTrajectoryParams()
par(mfrow = c(2, 3))
for (i in seq_along(p$params)) {
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
if (length(data) >= 2) {
boxplot(data, main = p$labels[i], ylab = p$labels[i], col = "lightblue", border = "darkblue")
points(1, mean(data), pch = 18, col = "red", cex = 1.5)
}
}
par(mfrow = c(1, 1))
}
```
```{r demo-boxplot, fig.width=10, fig.height=8, purl=FALSE, echo=FALSE}
if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 2) {
createBoxplots(all_flights_stats)
} else {
cat("Minimum sample size (n >= 2) not met\n")
}
```
Density plots employ kernel density estimation to approximate the probability distribution of each parameter. Vertical lines indicate mean (red, dashed) and median (green, dotted).
```{r vis-density}
createDensityPlots <- function(trajectory_stats_df) {
p <- getTrajectoryParams()
par(mfrow = c(2, 3))
for (i in seq_along(p$params)) {
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
if (length(data) >= 3) {
dens <- density(data)
plot(dens, main = paste("Density:", p$labels[i]), xlab = p$labels[i], col = "darkblue", lwd = 2)
polygon(dens, col = rgb(0, 0, 1, 0.3), border = "darkblue")
abline(v = mean(data), col = "red", lwd = 2, lty = 2)
abline(v = median(data), col = "green", lwd = 2, lty = 3)
}
}
par(mfrow = c(1, 1))
}
```
```{r demo-density, fig.width=10, fig.height=8, purl=FALSE, echo=FALSE}
if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 3) {
createDensityPlots(all_flights_stats)
} else {
cat("Minimum sample size (n >= 3) not met for density estimation\n")
}
```
Histograms with overlaid density curves provide an alternative visualization of parameter distributions.
```{r vis-histogram}
createHistograms <- function(trajectory_stats_df) {
p <- getTrajectoryParams()
par(mfrow = c(2, 3))
for (i in seq_along(p$params)) {
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
if (length(data) >= 3) {
hist(data, probability = TRUE, main = paste("Histogram:", p$labels[i]),
xlab = p$labels[i], col = "lightgray", border = "darkgray")
lines(density(data), col = "red", lwd = 2)
}
}
par(mfrow = c(1, 1))
}
```
```{r demo-histogram, fig.width=10, fig.height=8, purl=FALSE, echo=FALSE}
if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 3) {
createHistograms(all_flights_stats)
} else {
cat("Minimum sample size (n >= 3) not met for histogram analysis\n")
}
```
The `generateInterpretation()` function provides contextual analysis of the computed trajectory metrics.
```{r vis-interpretation, include=FALSE}
generateInterpretation <- function(trajectory_stats_df) {
df <- trajectory_stats_df
text <- "========== INTERPRETATION OF TRAJECTORY PARAMETERS ==========\n\n"
dd <- df$diffusion_distance_km[!is.na(df$diffusion_distance_km)]
if (length(dd) >= 2) {
text <- paste0(text, "1. DIFFUSION DISTANCE (Net Displacement):\n")
text <- paste0(text, " - Mean: ", round(mean(dd), 2), " km\n")
text <- paste0(text, " - Represents straight-line distance from origin to destination.\n")
text <- paste0(text, " - Variance: ", round(var(dd), 2), " (indicates diversity in flight distances)\n\n")
}
st <- df$straightness[!is.na(df$straightness)]
if (length(st) >= 2) {
text <- paste0(text, "2. STRAIGHTNESS INDEX:\n")
text <- paste0(text, " - Mean: ", round(mean(st), 4), " (range 0-1, where 1 = perfectly straight)\n")
text <- paste0(text, " - Values close to 1 indicate efficient, direct flight paths.\n")
text <- paste0(text, " - Lower values suggest deviations due to weather, airspace, or routing.\n\n")
}
dur <- df$duration_min[!is.na(df$duration_min)]
if (length(dur) >= 2) {
text <- paste0(text, "3. DURATION OF TRAVEL:\n")
text <- paste0(text, " - Mean: ", round(mean(dur), 2), " minutes\n")
text <- paste0(text, " - Range: ", round(min(dur), 2), " - ", round(max(dur), 2), " minutes\n")
text <- paste0(text, " - IQR: ", round(IQR(dur), 2), " minutes (middle 50% of flights)\n\n")
}
vel <- df$mean_velocity_kmh[!is.na(df$mean_velocity_kmh)]
if (length(vel) >= 2) {
text <- paste0(text, "4. MEAN TRAVEL VELOCITY:\n")
text <- paste0(text, " - Mean: ", round(mean(vel), 2), " km/h\n")
text <- paste0(text, " - Typical commercial aircraft cruise: 800-900 km/h\n")
text <- paste0(text, " - Lower values may include taxi, takeoff, and landing phases.\n\n")
}
fd <- df$fractal_dimension[!is.na(df$fractal_dimension)]
if (length(fd) >= 2) {
text <- paste0(text, "5. FRACTAL DIMENSION:\n")
text <- paste0(text, " - Mean: ", round(mean(fd), 4), "\n")
text <- paste0(text, " - Value of 1.0 = perfectly straight line\n")
text <- paste0(text, " - Values closer to 2.0 = more complex, space-filling paths\n")
text <- paste0(text, " - Aircraft typically show low fractal dimension (efficient paths).\n\n")
}
text <- paste0(text, "========== END OF ANALYSIS ==========")
text
}
```
```{r demo-interpretation, purl=FALSE, echo=TRUE}
if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 2) {
interpretation <- generateInterpretation(all_flights_stats)
cat(interpretation)
} else {
cat("Minimum sample size (n >= 2) not met for interpretation\n")
}
```
We also include an interactive map using `leaflet` to provide an intuitive display for the route of the aircraft.
```{r vis-map}
library(leaflet)
createInteractiveMap <- function(route) {
leaflet(route) %>%
addTiles() %>%
addPolylines(lng=~lon, lat=~lat, color="blue", weight=3, opacity=0.8) %>%
addCircleMarkers(
lng = ~lon[1],
lat = ~lat[1],
color = "green",
radius = 6,
popup = "Origin"
) %>%
addCircleMarkers(
lng = ~lon[nrow(route)],
lat = ~lat[nrow(route)],
color = "red",
radius = 6,
popup = "Destination"
)
}
```
![Departures View](../doc/web-departures.png)
![Single Flight View](../doc/web-single.png)
![Statistics View](../doc/web-stats.png)
![Interpretation View](../doc/web-interpretation.png)
# Discussion
## Key Findings
The trajectory analysis reveals several characteristics typical of commercial aviation:
1. **High Straightness Values**: Commercial flights generally exhibit straightness indices approaching 1.0, indicating efficient direct routing between waypoints.
2. **Low Fractal Dimension**: Values close to 1.0 confirm that flight paths approximate straight lines, consistent with fuel-efficient routing principles.
3. **Velocity Patterns**: Mean velocities below typical cruise speeds (800-900 km/h) reflect the inclusion of departure and arrival phases in the trajectory data.
## Limitations
- **Temporal Resolution**: Track data granularity varies based on ADS-B receiver coverage
- **Sample Size**: Statistical inference is limited by the number of available flights with complete track data
# Conclusion
This project demonstrates the successful application of movement ecology metrics to aviation trajectory analysis. The implemented R framework provides a reproducible methodology for flight path characterization and statistical comparison. The `trajr` package proves suitable for aircraft trajectory analysis, offering robust metrics originally developed for biological movement studies.
# References
1. [The OpenSky Network. (2025). Internet archive of observed aircraft trajectories.](https://opensky-network.org/datasets/states/)
2. [Schäfer, M, Strohmeier, M, Lenders, V, Martinovic, I, Wilhelm, M. (2014). Bringing Up OpenSky: A Large-scale ADS-B Sensor Network for Research. In Proceedings of the 13th IEEE/ACM International Symposium on Information Processing in Sensor Networks (IPSN), pages 83-94.](https://opensky-network.org/files/publications/ipsn2014.pdf)
3. [Zheng, Y. (2015). Trajectory Data Mining: An Overview. ACM Transactions on Intelligent Systems and Technology, 61(3), 141.](https://doi.org/10.1145/2743025)
4. [Thulin, M. (2025). Modern Statistics with R: From wrangling and exploring data to inference and predictive modelling. CRC Press. Boca Raton, Fl.](https://modernstatisticswithr.com/)
5. [McLean, D J, and Skowron Volponi, M A. (2018). trajr: An R package for characterisation of animal trajectories. Ethology, 124, 440448.](https://doi.org/10.1111/eth.12739)