begin compression

This commit is contained in:
eneller
2025-11-25 13:14:17 +01:00
parent 5f5ee2b395
commit 31a3e956ab
4 changed files with 73 additions and 3 deletions

5
.latexmkrc Normal file
View File

@@ -0,0 +1,5 @@
$latex = 'latex %O --shell-escape %S';
$pdflatex = 'pdflatex %O --shell-escape %S';
$pdf_mode = 1;
$clean_ext = "lol nav snm";
$bibtex_use = 2;

7
compression.bib Normal file
View File

@@ -0,0 +1,7 @@
@misc{ enwiki:shannon-source-coding,
author = "{Wikipedia contributors}",
title = "Shannon's source coding theorem --- {Wikipedia}{,} The Free Encyclopedia",
year = "2025",
url = "https://en.wikipedia.org/w/index.php?title=Shannon%27s_source_coding_theorem&oldid=1301398440",
note = "[Online; accessed 25-November-2025]"
}

View File

@@ -1,2 +1,61 @@
\documentclass{article}
\usepackage[utf8x]{inputenc}
\usepackage[margin=1in]{geometry} % Adjust margins
\usepackage{caption}
\usepackage{wrapfig}
\usepackage{subcaption}
\usepackage{parskip} % dont indent after paragraphs, figures
\usepackage{xcolor}
%\usepackage{csquotes} % Recommended for biblatex
\usepackage{tikz}
\usepackage{pgfplots}
\usetikzlibrary{positioning}
%\usegdlibrary{trees}
\usepackage{float}
\usepackage{amsmath}
\PassOptionsToPackage{hyphens}{url}
\usepackage{hyperref} % allows urls to follow line breaks of text
\usepackage[style=ieee, backend=biber, maxnames=1, minnames=1]{biblatex}
\addbibresource{compression.bib}
Compression codes (theorems: Kraft, Shannon-Fano, Huffman, arithmetic and LZW code)
\title{Compression}
\author{Erik Neller}
\date{\today}
\begin{document}
\maketitle
\section{Introduction}
As the volume of data grows exponentially around the world, compression is only gaining in importance to all disciplines.
Not only does it enable the storage of large amounts of information needed for research in scientific domains
like DNA sequencing and analysis, it also plays a vital role in keeping stored data accessible by
facilitating cataloging, search and retrieval.
The concept of entropy is closely related to the design of efficient codes.
\begin{equation}
H = E(I) = - \sum_i p_i \log_2(p_i)
\label{eq:entropy-information}
\end{equation}
The understanding of entropy as the expected information $E(I)$ of a message provides an intuition that,
given a source with a given entropy (in bits), any coding can not have a lower average word length (in bits)
than this entropy without losing information.
This is the content of Shannons's source coding theorem \cite{enwiki:shannon-source-coding}.
% https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem
\section{Kraft-McMillan inequality}
% https://de.wikipedia.org/wiki/Kraft-Ungleichung
% https://en.wikipedia.org/wiki/Kraft%E2%80%93McMillan_inequality
\section{Shannon-Fano}
% https://de.wikipedia.org/wiki/Shannon-Fano-Kodierung
\section{Huffman Coding}
% https://de.wikipedia.org/wiki/Huffman-Kodierung
\section{LZW Algorithm}
% https://de.wikipedia.org/wiki/Lempel-Ziv-Welch-Algorithmus
\section{Arithmetic Coding}
% https://en.wikipedia.org/wiki/Arithmetic_coding
\printbibliography
\end{document}

View File

@@ -26,7 +26,7 @@
\begin{document}
\maketitle
\section{What is entropy?}
\section{Introduction}
Across disciplines, entropy is a measure of uncertainty or randomness.
Originating in classical thermodynamics,
over time it has been applied in different sciences such as chemistry and information theory.
@@ -355,7 +355,6 @@ Shannons theorem is not constructive as it does not provide an explicit metho
but it guarantees their existence.
In practice, structured codes such as Hamming and ReedSolomon codes are employed to approach channel capacity.
\section{Conclusion}
\section{Conclusion}
Entropy provides a fundamental measure of uncertainty and information,
bridging concepts from thermodynamics to modern communication theory.