moving to scripts

This commit is contained in:
eneller
2021-11-16 23:55:48 +01:00
parent f591ca2077
commit 14bfb7f96f
2575 changed files with 465862 additions and 0 deletions

View File

@@ -0,0 +1,35 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
class AsymmetricSignatureContext(metaclass=abc.ABCMeta):
@abc.abstractmethod
def update(self, data: bytes) -> None:
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def finalize(self) -> bytes:
"""
Returns the signature as bytes.
"""
class AsymmetricVerificationContext(metaclass=abc.ABCMeta):
@abc.abstractmethod
def update(self, data: bytes) -> None:
"""
Processes the provided bytes and returns nothing.
"""
@abc.abstractmethod
def verify(self) -> None:
"""
Raises an exception if the bytes provided to update do not match the
signature or the signature does not match the public key.
"""

View File

@@ -0,0 +1,239 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import Backend
from cryptography.hazmat.primitives import serialization
_MIN_MODULUS_SIZE = 512
def generate_parameters(
generator: int, key_size: int, backend: typing.Optional[Backend] = None
) -> "DHParameters":
backend = _get_backend(backend)
return backend.generate_dh_parameters(generator, key_size)
class DHParameterNumbers(object):
def __init__(self, p: int, g: int, q: typing.Optional[int] = None) -> None:
if not isinstance(p, int) or not isinstance(g, int):
raise TypeError("p and g must be integers")
if q is not None and not isinstance(q, int):
raise TypeError("q must be integer or None")
if g < 2:
raise ValueError("DH generator must be 2 or greater")
if p.bit_length() < _MIN_MODULUS_SIZE:
raise ValueError(
"p (modulus) must be at least {}-bit".format(_MIN_MODULUS_SIZE)
)
self._p = p
self._g = g
self._q = q
def __eq__(self, other):
if not isinstance(other, DHParameterNumbers):
return NotImplemented
return (
self._p == other._p and self._g == other._g and self._q == other._q
)
def __ne__(self, other):
return not self == other
def parameters(
self, backend: typing.Optional[Backend] = None
) -> "DHParameters":
backend = _get_backend(backend)
return backend.load_dh_parameter_numbers(self)
p = property(lambda self: self._p)
g = property(lambda self: self._g)
q = property(lambda self: self._q)
class DHPublicNumbers(object):
def __init__(self, y: int, parameter_numbers: DHParameterNumbers) -> None:
if not isinstance(y, int):
raise TypeError("y must be an integer.")
if not isinstance(parameter_numbers, DHParameterNumbers):
raise TypeError(
"parameters must be an instance of DHParameterNumbers."
)
self._y = y
self._parameter_numbers = parameter_numbers
def __eq__(self, other):
if not isinstance(other, DHPublicNumbers):
return NotImplemented
return (
self._y == other._y
and self._parameter_numbers == other._parameter_numbers
)
def __ne__(self, other):
return not self == other
def public_key(
self, backend: typing.Optional[Backend] = None
) -> "DHPublicKey":
backend = _get_backend(backend)
return backend.load_dh_public_numbers(self)
y = property(lambda self: self._y)
parameter_numbers = property(lambda self: self._parameter_numbers)
class DHPrivateNumbers(object):
def __init__(self, x: int, public_numbers: DHPublicNumbers) -> None:
if not isinstance(x, int):
raise TypeError("x must be an integer.")
if not isinstance(public_numbers, DHPublicNumbers):
raise TypeError(
"public_numbers must be an instance of " "DHPublicNumbers."
)
self._x = x
self._public_numbers = public_numbers
def __eq__(self, other):
if not isinstance(other, DHPrivateNumbers):
return NotImplemented
return (
self._x == other._x
and self._public_numbers == other._public_numbers
)
def __ne__(self, other):
return not self == other
def private_key(
self, backend: typing.Optional[Backend] = None
) -> "DHPrivateKey":
backend = _get_backend(backend)
return backend.load_dh_private_numbers(self)
public_numbers = property(lambda self: self._public_numbers)
x = property(lambda self: self._x)
class DHParameters(metaclass=abc.ABCMeta):
@abc.abstractmethod
def generate_private_key(self) -> "DHPrivateKey":
"""
Generates and returns a DHPrivateKey.
"""
@abc.abstractmethod
def parameter_bytes(
self,
encoding: "serialization.Encoding",
format: "serialization.ParameterFormat",
) -> bytes:
"""
Returns the parameters serialized as bytes.
"""
@abc.abstractmethod
def parameter_numbers(self) -> DHParameterNumbers:
"""
Returns a DHParameterNumbers.
"""
DHParametersWithSerialization = DHParameters
class DHPublicKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self) -> DHParameters:
"""
The DHParameters object associated with this public key.
"""
@abc.abstractmethod
def public_numbers(self) -> DHPublicNumbers:
"""
Returns a DHPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: "serialization.Encoding",
format: "serialization.PublicFormat",
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DHPublicKeyWithSerialization = DHPublicKey
class DHPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self) -> DHPublicKey:
"""
The DHPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self) -> DHParameters:
"""
The DHParameters object associated with this private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: DHPublicKey) -> bytes:
"""
Given peer's DHPublicKey, carry out the key exchange and
return shared key as bytes.
"""
@abc.abstractmethod
def private_numbers(self) -> DHPrivateNumbers:
"""
Returns a DHPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: "serialization.Encoding",
format: "serialization.PrivateFormat",
encryption_algorithm: "serialization.KeySerializationEncryption",
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DHPrivateKeyWithSerialization = DHPrivateKey

View File

@@ -0,0 +1,297 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import Backend
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext,
AsymmetricVerificationContext,
utils as asym_utils,
)
class DSAParameters(metaclass=abc.ABCMeta):
@abc.abstractmethod
def generate_private_key(self) -> "DSAPrivateKey":
"""
Generates and returns a DSAPrivateKey.
"""
@abc.abstractmethod
def parameter_numbers(self) -> "DSAParameterNumbers":
"""
Returns a DSAParameterNumbers.
"""
DSAParametersWithNumbers = DSAParameters
class DSAPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def public_key(self) -> "DSAPublicKey":
"""
The DSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def parameters(self) -> DSAParameters:
"""
The DSAParameters object associated with this private key.
"""
@abc.abstractmethod
def signer(
self,
signature_algorithm: hashes.HashAlgorithm,
) -> AsymmetricSignatureContext:
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
"""
Signs the data
"""
@abc.abstractmethod
def private_numbers(self) -> "DSAPrivateNumbers":
"""
Returns a DSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
DSAPrivateKeyWithSerialization = DSAPrivateKey
class DSAPublicKey(metaclass=abc.ABCMeta):
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the prime modulus.
"""
@abc.abstractmethod
def parameters(self) -> DSAParameters:
"""
The DSAParameters object associated with this public key.
"""
@abc.abstractmethod
def verifier(
self,
signature: bytes,
signature_algorithm: hashes.HashAlgorithm,
) -> AsymmetricVerificationContext:
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractmethod
def public_numbers(self) -> "DSAPublicNumbers":
"""
Returns a DSAPublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
"""
Verifies the signature of the data.
"""
DSAPublicKeyWithSerialization = DSAPublicKey
class DSAParameterNumbers(object):
def __init__(self, p: int, q: int, g: int):
if (
not isinstance(p, int)
or not isinstance(q, int)
or not isinstance(g, int)
):
raise TypeError(
"DSAParameterNumbers p, q, and g arguments must be integers."
)
self._p = p
self._q = q
self._g = g
p = property(lambda self: self._p)
q = property(lambda self: self._q)
g = property(lambda self: self._g)
def parameters(
self, backend: typing.Optional[Backend] = None
) -> DSAParameters:
backend = _get_backend(backend)
return backend.load_dsa_parameter_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAParameterNumbers):
return NotImplemented
return self.p == other.p and self.q == other.q and self.g == other.g
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAParameterNumbers(p={self.p}, q={self.q}, "
"g={self.g})>".format(self=self)
)
class DSAPublicNumbers(object):
def __init__(self, y: int, parameter_numbers: DSAParameterNumbers):
if not isinstance(y, int):
raise TypeError("DSAPublicNumbers y argument must be an integer.")
if not isinstance(parameter_numbers, DSAParameterNumbers):
raise TypeError(
"parameter_numbers must be a DSAParameterNumbers instance."
)
self._y = y
self._parameter_numbers = parameter_numbers
y = property(lambda self: self._y)
parameter_numbers = property(lambda self: self._parameter_numbers)
def public_key(
self, backend: typing.Optional[Backend] = None
) -> DSAPublicKey:
backend = _get_backend(backend)
return backend.load_dsa_public_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPublicNumbers):
return NotImplemented
return (
self.y == other.y
and self.parameter_numbers == other.parameter_numbers
)
def __ne__(self, other):
return not self == other
def __repr__(self):
return (
"<DSAPublicNumbers(y={self.y}, "
"parameter_numbers={self.parameter_numbers})>".format(self=self)
)
class DSAPrivateNumbers(object):
def __init__(self, x: int, public_numbers: DSAPublicNumbers):
if not isinstance(x, int):
raise TypeError("DSAPrivateNumbers x argument must be an integer.")
if not isinstance(public_numbers, DSAPublicNumbers):
raise TypeError(
"public_numbers must be a DSAPublicNumbers instance."
)
self._public_numbers = public_numbers
self._x = x
x = property(lambda self: self._x)
public_numbers = property(lambda self: self._public_numbers)
def private_key(
self, backend: typing.Optional[Backend] = None
) -> DSAPrivateKey:
backend = _get_backend(backend)
return backend.load_dsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, DSAPrivateNumbers):
return NotImplemented
return (
self.x == other.x and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def generate_parameters(
key_size: int, backend: typing.Optional[Backend] = None
) -> DSAParameters:
backend = _get_backend(backend)
return backend.generate_dsa_parameters(key_size)
def generate_private_key(
key_size: int, backend: typing.Optional[Backend] = None
) -> DSAPrivateKey:
backend = _get_backend(backend)
return backend.generate_dsa_private_key_and_parameters(key_size)
def _check_dsa_parameters(parameters: DSAParameterNumbers) -> None:
if parameters.p.bit_length() not in [1024, 2048, 3072, 4096]:
raise ValueError(
"p must be exactly 1024, 2048, 3072, or 4096 bits long"
)
if parameters.q.bit_length() not in [160, 224, 256]:
raise ValueError("q must be exactly 160, 224, or 256 bits long")
if not (1 < parameters.g < parameters.p):
raise ValueError("g, p don't satisfy 1 < g < p.")
def _check_dsa_private_numbers(numbers: DSAPrivateNumbers) -> None:
parameters = numbers.public_numbers.parameter_numbers
_check_dsa_parameters(parameters)
if numbers.x <= 0 or numbers.x >= parameters.q:
raise ValueError("x must be > 0 and < q.")
if numbers.public_numbers.y != pow(parameters.g, numbers.x, parameters.p):
raise ValueError("y must be equal to (g ** x % p).")

View File

@@ -0,0 +1,533 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
import warnings
from cryptography import utils
from cryptography.hazmat._oid import ObjectIdentifier
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import Backend
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext,
AsymmetricVerificationContext,
utils as asym_utils,
)
class EllipticCurveOID(object):
SECP192R1 = ObjectIdentifier("1.2.840.10045.3.1.1")
SECP224R1 = ObjectIdentifier("1.3.132.0.33")
SECP256K1 = ObjectIdentifier("1.3.132.0.10")
SECP256R1 = ObjectIdentifier("1.2.840.10045.3.1.7")
SECP384R1 = ObjectIdentifier("1.3.132.0.34")
SECP521R1 = ObjectIdentifier("1.3.132.0.35")
BRAINPOOLP256R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.7")
BRAINPOOLP384R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.11")
BRAINPOOLP512R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.13")
SECT163K1 = ObjectIdentifier("1.3.132.0.1")
SECT163R2 = ObjectIdentifier("1.3.132.0.15")
SECT233K1 = ObjectIdentifier("1.3.132.0.26")
SECT233R1 = ObjectIdentifier("1.3.132.0.27")
SECT283K1 = ObjectIdentifier("1.3.132.0.16")
SECT283R1 = ObjectIdentifier("1.3.132.0.17")
SECT409K1 = ObjectIdentifier("1.3.132.0.36")
SECT409R1 = ObjectIdentifier("1.3.132.0.37")
SECT571K1 = ObjectIdentifier("1.3.132.0.38")
SECT571R1 = ObjectIdentifier("1.3.132.0.39")
class EllipticCurve(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
The name of the curve. e.g. secp256r1.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
class EllipticCurveSignatureAlgorithm(metaclass=abc.ABCMeta):
@abc.abstractproperty
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
"""
The digest algorithm used with this signature.
"""
class EllipticCurvePrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def signer(
self,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> AsymmetricSignatureContext:
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def exchange(
self, algorithm: "ECDH", peer_public_key: "EllipticCurvePublicKey"
) -> bytes:
"""
Performs a key exchange operation using the provided algorithm with the
provided peer's public key.
"""
@abc.abstractmethod
def public_key(self) -> "EllipticCurvePublicKey":
"""
The EllipticCurvePublicKey for this private key.
"""
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> bytes:
"""
Signs the data
"""
@abc.abstractmethod
def private_numbers(self) -> "EllipticCurvePrivateNumbers":
"""
Returns an EllipticCurvePrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
EllipticCurvePrivateKeyWithSerialization = EllipticCurvePrivateKey
class EllipticCurvePublicKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def verifier(
self,
signature: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> AsymmetricVerificationContext:
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def public_numbers(self) -> "EllipticCurvePublicNumbers":
"""
Returns an EllipticCurvePublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> None:
"""
Verifies the signature of the data.
"""
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicKey":
utils._check_bytes("data", data)
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
if len(data) == 0:
raise ValueError("data must not be an empty byte string")
if data[0] not in [0x02, 0x03, 0x04]:
raise ValueError("Unsupported elliptic curve point type")
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_elliptic_curve_public_bytes(curve, data)
EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
class SECT571R1(EllipticCurve):
name = "sect571r1"
key_size = 570
class SECT409R1(EllipticCurve):
name = "sect409r1"
key_size = 409
class SECT283R1(EllipticCurve):
name = "sect283r1"
key_size = 283
class SECT233R1(EllipticCurve):
name = "sect233r1"
key_size = 233
class SECT163R2(EllipticCurve):
name = "sect163r2"
key_size = 163
class SECT571K1(EllipticCurve):
name = "sect571k1"
key_size = 571
class SECT409K1(EllipticCurve):
name = "sect409k1"
key_size = 409
class SECT283K1(EllipticCurve):
name = "sect283k1"
key_size = 283
class SECT233K1(EllipticCurve):
name = "sect233k1"
key_size = 233
class SECT163K1(EllipticCurve):
name = "sect163k1"
key_size = 163
class SECP521R1(EllipticCurve):
name = "secp521r1"
key_size = 521
class SECP384R1(EllipticCurve):
name = "secp384r1"
key_size = 384
class SECP256R1(EllipticCurve):
name = "secp256r1"
key_size = 256
class SECP256K1(EllipticCurve):
name = "secp256k1"
key_size = 256
class SECP224R1(EllipticCurve):
name = "secp224r1"
key_size = 224
class SECP192R1(EllipticCurve):
name = "secp192r1"
key_size = 192
class BrainpoolP256R1(EllipticCurve):
name = "brainpoolP256r1"
key_size = 256
class BrainpoolP384R1(EllipticCurve):
name = "brainpoolP384r1"
key_size = 384
class BrainpoolP512R1(EllipticCurve):
name = "brainpoolP512r1"
key_size = 512
_CURVE_TYPES: typing.Dict[str, typing.Type[EllipticCurve]] = {
"prime192v1": SECP192R1,
"prime256v1": SECP256R1,
"secp192r1": SECP192R1,
"secp224r1": SECP224R1,
"secp256r1": SECP256R1,
"secp384r1": SECP384R1,
"secp521r1": SECP521R1,
"secp256k1": SECP256K1,
"sect163k1": SECT163K1,
"sect233k1": SECT233K1,
"sect283k1": SECT283K1,
"sect409k1": SECT409K1,
"sect571k1": SECT571K1,
"sect163r2": SECT163R2,
"sect233r1": SECT233R1,
"sect283r1": SECT283R1,
"sect409r1": SECT409R1,
"sect571r1": SECT571R1,
"brainpoolP256r1": BrainpoolP256R1,
"brainpoolP384r1": BrainpoolP384R1,
"brainpoolP512r1": BrainpoolP512R1,
}
class ECDSA(EllipticCurveSignatureAlgorithm):
def __init__(
self,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
):
self._algorithm = algorithm
@property
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
return self._algorithm
def generate_private_key(
curve: EllipticCurve, backend: typing.Optional[Backend] = None
) -> EllipticCurvePrivateKey:
backend = _get_backend(backend)
return backend.generate_elliptic_curve_private_key(curve)
def derive_private_key(
private_value: int,
curve: EllipticCurve,
backend: typing.Optional[Backend] = None,
) -> EllipticCurvePrivateKey:
backend = _get_backend(backend)
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer type.")
if private_value <= 0:
raise ValueError("private_value must be a positive integer.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
return backend.derive_elliptic_curve_private_key(private_value, curve)
class EllipticCurvePublicNumbers(object):
def __init__(self, x: int, y: int, curve: EllipticCurve):
if not isinstance(x, int) or not isinstance(y, int):
raise TypeError("x and y must be integers.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
self._y = y
self._x = x
self._curve = curve
def public_key(
self, backend: typing.Optional[Backend] = None
) -> EllipticCurvePublicKey:
backend = _get_backend(backend)
return backend.load_elliptic_curve_public_numbers(self)
def encode_point(self) -> bytes:
warnings.warn(
"encode_point has been deprecated on EllipticCurvePublicNumbers"
" and will be removed in a future version. Please use "
"EllipticCurvePublicKey.public_bytes to obtain both "
"compressed and uncompressed point encoding.",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
# key_size is in bits. Convert to bytes and round up
byte_length = (self.curve.key_size + 7) // 8
return (
b"\x04"
+ utils.int_to_bytes(self.x, byte_length)
+ utils.int_to_bytes(self.y, byte_length)
)
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicNumbers":
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
warnings.warn(
"Support for unsafe construction of public numbers from "
"encoded data will be removed in a future version. "
"Please use EllipticCurvePublicKey.from_encoded_point",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
if data.startswith(b"\x04"):
# key_size is in bits. Convert to bytes and round up
byte_length = (curve.key_size + 7) // 8
if len(data) == 2 * byte_length + 1:
x = int.from_bytes(data[1 : byte_length + 1], "big")
y = int.from_bytes(data[byte_length + 1 :], "big")
return cls(x, y, curve)
else:
raise ValueError("Invalid elliptic curve point data length")
else:
raise ValueError("Unsupported elliptic curve point type")
curve = property(lambda self: self._curve)
x = property(lambda self: self._x)
y = property(lambda self: self._y)
def __eq__(self, other):
if not isinstance(other, EllipticCurvePublicNumbers):
return NotImplemented
return (
self.x == other.x
and self.y == other.y
and self.curve.name == other.curve.name
and self.curve.key_size == other.curve.key_size
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.x, self.y, self.curve.name, self.curve.key_size))
def __repr__(self):
return (
"<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
"y={0.y}>".format(self)
)
class EllipticCurvePrivateNumbers(object):
def __init__(
self, private_value: int, public_numbers: EllipticCurvePublicNumbers
):
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer.")
if not isinstance(public_numbers, EllipticCurvePublicNumbers):
raise TypeError(
"public_numbers must be an EllipticCurvePublicNumbers "
"instance."
)
self._private_value = private_value
self._public_numbers = public_numbers
def private_key(
self, backend: typing.Optional[Backend] = None
) -> EllipticCurvePrivateKey:
backend = _get_backend(backend)
return backend.load_elliptic_curve_private_numbers(self)
private_value = property(lambda self: self._private_value)
public_numbers = property(lambda self: self._public_numbers)
def __eq__(self, other):
if not isinstance(other, EllipticCurvePrivateNumbers):
return NotImplemented
return (
self.private_value == other.private_value
and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.private_value, self.public_numbers))
class ECDH(object):
pass
_OID_TO_CURVE = {
EllipticCurveOID.SECP192R1: SECP192R1,
EllipticCurveOID.SECP224R1: SECP224R1,
EllipticCurveOID.SECP256K1: SECP256K1,
EllipticCurveOID.SECP256R1: SECP256R1,
EllipticCurveOID.SECP384R1: SECP384R1,
EllipticCurveOID.SECP521R1: SECP521R1,
EllipticCurveOID.BRAINPOOLP256R1: BrainpoolP256R1,
EllipticCurveOID.BRAINPOOLP384R1: BrainpoolP384R1,
EllipticCurveOID.BRAINPOOLP512R1: BrainpoolP512R1,
EllipticCurveOID.SECT163K1: SECT163K1,
EllipticCurveOID.SECT163R2: SECT163R2,
EllipticCurveOID.SECT233K1: SECT233K1,
EllipticCurveOID.SECT233R1: SECT233R1,
EllipticCurveOID.SECT283K1: SECT283K1,
EllipticCurveOID.SECT283R1: SECT283R1,
EllipticCurveOID.SECT409K1: SECT409K1,
EllipticCurveOID.SECT409R1: SECT409R1,
EllipticCurveOID.SECT571K1: SECT571K1,
EllipticCurveOID.SECT571R1: SECT571R1,
}
def get_curve_for_oid(oid: ObjectIdentifier) -> typing.Type[EllipticCurve]:
try:
return _OID_TO_CURVE[oid]
except KeyError:
raise LookupError(
"The provided object identifier has no matching elliptic "
"curve class"
)

View File

@@ -0,0 +1,92 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
_ED25519_KEY_SIZE = 32
_ED25519_SIG_SIZE = 64
class Ed25519PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "Ed25519PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature: bytes, data: bytes) -> None:
"""
Verify the signature.
"""
class Ed25519PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "Ed25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "Ed25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed25519_supported():
raise UnsupportedAlgorithm(
"ed25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> Ed25519PublicKey:
"""
The Ed25519PublicKey derived from the private key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def sign(self, data: bytes) -> bytes:
"""
Signs the data.
"""

View File

@@ -0,0 +1,87 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class Ed448PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "Ed448PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def verify(self, signature: bytes, data: bytes) -> None:
"""
Verify the signature.
"""
class Ed448PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "Ed448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "Ed448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.ed448_supported():
raise UnsupportedAlgorithm(
"ed448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)
return backend.ed448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> Ed448PublicKey:
"""
The Ed448PublicKey derived from the private key.
"""
@abc.abstractmethod
def sign(self, data: bytes) -> bytes:
"""
Signs the data.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""

View File

@@ -0,0 +1,75 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives._asymmetric import (
AsymmetricPadding as AsymmetricPadding,
)
from cryptography.hazmat.primitives.asymmetric import rsa
class PKCS1v15(AsymmetricPadding):
name = "EMSA-PKCS1-v1_5"
class PSS(AsymmetricPadding):
MAX_LENGTH = object()
name = "EMSA-PSS"
def __init__(self, mgf, salt_length):
self._mgf = mgf
if (
not isinstance(salt_length, int)
and salt_length is not self.MAX_LENGTH
):
raise TypeError("salt_length must be an integer.")
if salt_length is not self.MAX_LENGTH and salt_length < 0:
raise ValueError("salt_length must be zero or greater.")
self._salt_length = salt_length
class OAEP(AsymmetricPadding):
name = "EME-OAEP"
def __init__(
self,
mgf: "MGF1",
algorithm: hashes.HashAlgorithm,
label: typing.Optional[bytes],
):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._mgf = mgf
self._algorithm = algorithm
self._label = label
class MGF1(object):
MAX_LENGTH = object()
def __init__(self, algorithm: hashes.HashAlgorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
self._algorithm = algorithm
def calculate_max_pss_salt_length(
key: typing.Union["rsa.RSAPrivateKey", "rsa.RSAPublicKey"],
hash_algorithm: hashes.HashAlgorithm,
) -> int:
if not isinstance(key, (rsa.RSAPrivateKey, rsa.RSAPublicKey)):
raise TypeError("key must be an RSA public or private key")
# bit length - 1 per RFC 3447
emlen = (key.key_size + 6) // 8
salt_length = emlen - hash_algorithm.digest_size - 2
assert salt_length >= 0
return salt_length

View File

@@ -0,0 +1,433 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
from math import gcd
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.backends import _get_backend
from cryptography.hazmat.backends.interfaces import Backend, RSABackend
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext,
AsymmetricVerificationContext,
utils as asym_utils,
)
class RSAPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def signer(
self, padding: AsymmetricPadding, algorithm: hashes.HashAlgorithm
) -> AsymmetricSignatureContext:
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Decrypts the provided ciphertext.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_key(self) -> "RSAPublicKey":
"""
The RSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> bytes:
"""
Signs the data.
"""
@abc.abstractmethod
def private_numbers(self) -> "RSAPrivateNumbers":
"""
Returns an RSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
RSAPrivateKeyWithSerialization = RSAPrivateKey
class RSAPublicKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def verifier(
self,
signature: bytes,
padding: AsymmetricPadding,
algorithm: hashes.HashAlgorithm,
) -> AsymmetricVerificationContext:
"""
Returns an AsymmetricVerificationContext used for verifying signatures.
"""
@abc.abstractmethod
def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Encrypts the given plaintext.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_numbers(self) -> "RSAPublicNumbers":
"""
Returns an RSAPublicNumbers
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
padding: AsymmetricPadding,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
) -> None:
"""
Verifies the signature of the data.
"""
@abc.abstractmethod
def recover_data_from_signature(
self,
signature: bytes,
padding: AsymmetricPadding,
algorithm: typing.Optional[hashes.HashAlgorithm],
) -> bytes:
"""
Recovers the original data from the signature.
"""
RSAPublicKeyWithSerialization = RSAPublicKey
def generate_private_key(
public_exponent: int,
key_size: int,
backend: typing.Optional[Backend] = None,
) -> RSAPrivateKey:
backend = _get_backend(backend)
if not isinstance(backend, RSABackend):
raise UnsupportedAlgorithm(
"Backend object does not implement RSABackend.",
_Reasons.BACKEND_MISSING_INTERFACE,
)
_verify_rsa_parameters(public_exponent, key_size)
return backend.generate_rsa_private_key(public_exponent, key_size)
def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
if public_exponent not in (3, 65537):
raise ValueError(
"public_exponent must be either 3 (for legacy compatibility) or "
"65537. Almost everyone should choose 65537 here!"
)
if key_size < 512:
raise ValueError("key_size must be at least 512-bits.")
def _check_private_key_components(
p: int,
q: int,
private_exponent: int,
dmp1: int,
dmq1: int,
iqmp: int,
public_exponent: int,
modulus: int,
) -> None:
if modulus < 3:
raise ValueError("modulus must be >= 3.")
if p >= modulus:
raise ValueError("p must be < modulus.")
if q >= modulus:
raise ValueError("q must be < modulus.")
if dmp1 >= modulus:
raise ValueError("dmp1 must be < modulus.")
if dmq1 >= modulus:
raise ValueError("dmq1 must be < modulus.")
if iqmp >= modulus:
raise ValueError("iqmp must be < modulus.")
if private_exponent >= modulus:
raise ValueError("private_exponent must be < modulus.")
if public_exponent < 3 or public_exponent >= modulus:
raise ValueError("public_exponent must be >= 3 and < modulus.")
if public_exponent & 1 == 0:
raise ValueError("public_exponent must be odd.")
if dmp1 & 1 == 0:
raise ValueError("dmp1 must be odd.")
if dmq1 & 1 == 0:
raise ValueError("dmq1 must be odd.")
if p * q != modulus:
raise ValueError("p*q must equal modulus.")
def _check_public_key_components(e: int, n: int) -> None:
if n < 3:
raise ValueError("n must be >= 3.")
if e < 3 or e >= n:
raise ValueError("e must be >= 3 and < n.")
if e & 1 == 0:
raise ValueError("e must be odd.")
def _modinv(e: int, m: int) -> int:
"""
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
"""
x1, x2 = 1, 0
a, b = e, m
while b > 0:
q, r = divmod(a, b)
xn = x1 - q * x2
a, b, x1, x2 = b, r, x2, xn
return x1 % m
def rsa_crt_iqmp(p: int, q: int) -> int:
"""
Compute the CRT (q ** -1) % p value from RSA primes p and q.
"""
return _modinv(q, p)
def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
"""
Compute the CRT private_exponent % (p - 1) value from the RSA
private_exponent (d) and p.
"""
return private_exponent % (p - 1)
def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
"""
Compute the CRT private_exponent % (q - 1) value from the RSA
private_exponent (d) and q.
"""
return private_exponent % (q - 1)
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def rsa_recover_prime_factors(
n: int, e: int, d: int
) -> typing.Tuple[int, int]:
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
p, q = sorted((p, q), reverse=True)
return (p, q)
class RSAPrivateNumbers(object):
def __init__(
self,
p: int,
q: int,
d: int,
dmp1: int,
dmq1: int,
iqmp: int,
public_numbers: "RSAPublicNumbers",
):
if (
not isinstance(p, int)
or not isinstance(q, int)
or not isinstance(d, int)
or not isinstance(dmp1, int)
or not isinstance(dmq1, int)
or not isinstance(iqmp, int)
):
raise TypeError(
"RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must"
" all be an integers."
)
if not isinstance(public_numbers, RSAPublicNumbers):
raise TypeError(
"RSAPrivateNumbers public_numbers must be an RSAPublicNumbers"
" instance."
)
self._p = p
self._q = q
self._d = d
self._dmp1 = dmp1
self._dmq1 = dmq1
self._iqmp = iqmp
self._public_numbers = public_numbers
p = property(lambda self: self._p)
q = property(lambda self: self._q)
d = property(lambda self: self._d)
dmp1 = property(lambda self: self._dmp1)
dmq1 = property(lambda self: self._dmq1)
iqmp = property(lambda self: self._iqmp)
public_numbers = property(lambda self: self._public_numbers)
def private_key(
self, backend: typing.Optional[Backend] = None
) -> RSAPrivateKey:
backend = _get_backend(backend)
return backend.load_rsa_private_numbers(self)
def __eq__(self, other):
if not isinstance(other, RSAPrivateNumbers):
return NotImplemented
return (
self.p == other.p
and self.q == other.q
and self.d == other.d
and self.dmp1 == other.dmp1
and self.dmq1 == other.dmq1
and self.iqmp == other.iqmp
and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(
(
self.p,
self.q,
self.d,
self.dmp1,
self.dmq1,
self.iqmp,
self.public_numbers,
)
)
class RSAPublicNumbers(object):
def __init__(self, e: int, n: int):
if not isinstance(e, int) or not isinstance(n, int):
raise TypeError("RSAPublicNumbers arguments must be integers.")
self._e = e
self._n = n
e = property(lambda self: self._e)
n = property(lambda self: self._n)
def public_key(
self, backend: typing.Optional[Backend] = None
) -> RSAPublicKey:
backend = _get_backend(backend)
return backend.load_rsa_public_numbers(self)
def __repr__(self):
return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self)
def __eq__(self, other):
if not isinstance(other, RSAPublicNumbers):
return NotImplemented
return self.e == other.e and self.n == other.n
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.e, self.n))

View File

@@ -0,0 +1,29 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import typing
from cryptography.hazmat.primitives.asymmetric import (
dsa,
ec,
ed25519,
ed448,
rsa,
)
PUBLIC_KEY_TYPES = typing.Union[
dsa.DSAPublicKey,
rsa.RSAPublicKey,
ec.EllipticCurvePublicKey,
ed25519.Ed25519PublicKey,
ed448.Ed448PublicKey,
]
PRIVATE_KEY_TYPES = typing.Union[
ed25519.Ed25519PrivateKey,
ed448.Ed448PrivateKey,
rsa.RSAPrivateKey,
dsa.DSAPrivateKey,
ec.EllipticCurvePrivateKey,
]

View File

@@ -0,0 +1,22 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from cryptography.hazmat.bindings._rust import asn1
from cryptography.hazmat.primitives import hashes
decode_dss_signature = asn1.decode_dss_signature
encode_dss_signature = asn1.encode_dss_signature
class Prehashed(object):
def __init__(self, algorithm: hashes.HashAlgorithm):
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of HashAlgorithm.")
self._algorithm = algorithm
self._digest_size = algorithm.digest_size
digest_size = property(lambda self: self._digest_size)

View File

@@ -0,0 +1,81 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class X25519PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "X25519PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
class X25519PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "X25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "X25519PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x25519_supported():
raise UnsupportedAlgorithm(
"X25519 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x25519_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> X25519PublicKey:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: X25519PublicKey) -> bytes:
"""
Performs a key exchange operation using the provided peer's public key.
"""

View File

@@ -0,0 +1,81 @@
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
from cryptography.exceptions import UnsupportedAlgorithm, _Reasons
from cryptography.hazmat.primitives import _serialization
class X448PublicKey(metaclass=abc.ABCMeta):
@classmethod
def from_public_bytes(cls, data: bytes) -> "X448PublicKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_load_public_bytes(data)
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
The serialized bytes of the public key.
"""
class X448PrivateKey(metaclass=abc.ABCMeta):
@classmethod
def generate(cls) -> "X448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_generate_key()
@classmethod
def from_private_bytes(cls, data: bytes) -> "X448PrivateKey":
from cryptography.hazmat.backends.openssl.backend import backend
if not backend.x448_supported():
raise UnsupportedAlgorithm(
"X448 is not supported by this version of OpenSSL.",
_Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
)
return backend.x448_load_private_bytes(data)
@abc.abstractmethod
def public_key(self) -> X448PublicKey:
"""
The serialized bytes of the public key.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
The serialized bytes of the private key.
"""
@abc.abstractmethod
def exchange(self, peer_public_key: X448PublicKey) -> bytes:
"""
Performs a key exchange operation using the provided peer's public key.
"""