Added trajectories and alternative GUI
This commit is contained in:
401
src/main.Rmd
401
src/main.Rmd
@@ -43,7 +43,6 @@ flights <- getFlights(icao,Sys.time(), creds)
|
||||
# TODO map from all available flights to tracks
|
||||
query <- list(icao24= icao, time=as.numeric(flights[[1]][["departure_time"]]))
|
||||
|
||||
# can get tracks for up to 30 days in the past
|
||||
response <-makeAuthenticatedRequest('tracks/all',query, creds)
|
||||
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
|
||||
if (!is.null(track_data$path) && length(track_data$path) > 0) {
|
||||
@@ -66,29 +65,383 @@ if (!is.null(track_data$path) && length(track_data$path) > 0) {
|
||||
}
|
||||
```
|
||||
|
||||
# GUI selection
|
||||
```{r gui}
|
||||
icaos <- lapply(departures, function(x) x[["ICAO24"]])
|
||||
options <- unlist(icaos) # tcltk needs a character vector
|
||||
|
||||
# Create a GUI list selection
|
||||
listSelect <- function(options){
|
||||
selected_option <- NULL
|
||||
tryCatch({
|
||||
selected_option <- select.list(
|
||||
title = "Select an aircraft",
|
||||
choices = options,
|
||||
preselect = NULL,
|
||||
multiple = FALSE,
|
||||
graphics = TRUE
|
||||
)
|
||||
}, error = function(w) {
|
||||
message('No GUI available')
|
||||
}
|
||||
# Trajectory Characteristics Analysis
|
||||
```{r trajectory-analysis}
|
||||
if (exists("route_df") && nrow(route_df) > 1) {
|
||||
|
||||
# Convert lat/lon to approximate meters (using simple equirectangular projection)
|
||||
# Reference point: first coordinate
|
||||
lat_ref <- route_df$lat[1]
|
||||
lon_ref <- route_df$lon[1]
|
||||
|
||||
# Convert to meters (approximate)
|
||||
meters_per_deg_lat <- 111320
|
||||
meters_per_deg_lon <- 111320 * cos(lat_ref * pi / 180)
|
||||
|
||||
x_meters <- (route_df$lon - lon_ref) * meters_per_deg_lon
|
||||
y_meters <- (route_df$lat - lat_ref) * meters_per_deg_lat
|
||||
time_seconds <- route_df$time - route_df$time[1]
|
||||
|
||||
# Create trajr trajectory object
|
||||
trj <- TrajFromCoords(
|
||||
data.frame(x = x_meters, y = y_meters, time = time_seconds),
|
||||
xCol = "x", yCol = "y", timeCol = "time"
|
||||
)
|
||||
if (nzchar(selected_option)){
|
||||
return(selected_option)
|
||||
}
|
||||
return(options[1])
|
||||
|
||||
# Calculate trajectory characteristics
|
||||
|
||||
# 1. Duration of travel (seconds)
|
||||
duration <- TrajDuration(trj)
|
||||
|
||||
# 2. Total path length (meters)
|
||||
path_length <- TrajLength(trj)
|
||||
|
||||
# 3. Diffusion distance (net displacement - straight line from start to end)
|
||||
diffusion_distance <- TrajDistance(trj)
|
||||
|
||||
# 4. Straightness index (ratio of net displacement to path length, 0-1)
|
||||
straightness <- TrajStraightness(trj)
|
||||
|
||||
# 5. Mean travel velocity (meters/second)
|
||||
mean_velocity <- path_length / duration
|
||||
|
||||
# 6. Fractal dimension (using divider method)
|
||||
# Note: requires sufficient points for accurate estimation
|
||||
fractal_dim <- tryCatch({
|
||||
# Calculate appropriate step sizes based on trajectory length
|
||||
min_step <- TrajLength(trj) / 100
|
||||
max_step <- TrajLength(trj) / 2
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
}, error = function(e) {
|
||||
message("Could not calculate fractal dimension: ", e$message)
|
||||
NA
|
||||
})
|
||||
|
||||
# Create summary data frame
|
||||
trajectory_characteristics <- data.frame(
|
||||
Parameter = c(
|
||||
"Duration of Travel (s)",
|
||||
"Duration of Travel (min)",
|
||||
"Path Length (m)",
|
||||
"Path Length (km)",
|
||||
"Diffusion Distance (m)",
|
||||
"Diffusion Distance (km)",
|
||||
"Straightness Index",
|
||||
"Mean Travel Velocity (m/s)",
|
||||
"Mean Travel Velocity (km/h)",
|
||||
"Fractal Dimension"
|
||||
),
|
||||
Value = c(
|
||||
round(duration, 2),
|
||||
round(duration / 60, 2),
|
||||
round(path_length, 2),
|
||||
round(path_length / 1000, 2),
|
||||
round(diffusion_distance, 2),
|
||||
round(diffusion_distance / 1000, 2),
|
||||
round(straightness, 4),
|
||||
round(mean_velocity, 2),
|
||||
round(mean_velocity * 3.6, 2),
|
||||
round(fractal_dim, 4)
|
||||
)
|
||||
)
|
||||
|
||||
print(trajectory_characteristics)
|
||||
|
||||
# Visualize the trajectory using trajr
|
||||
plot(trj, main = paste("Trajectory of", icao))
|
||||
|
||||
} else {
|
||||
message("No valid trajectory data available for analysis")
|
||||
}
|
||||
```
|
||||
|
||||
# Statistical Analysis of Multiple Trajectories
|
||||
```{r multi-trajectory-analysis}
|
||||
# Function to calculate trajectory characteristics for a single flight
|
||||
calculate_trajectory_params <- function(icao24, departure_time, creds) {
|
||||
tryCatch({
|
||||
query <- list(icao24 = icao24, time = as.numeric(departure_time))
|
||||
response <- makeAuthenticatedRequest('tracks/all', query, creds)
|
||||
|
||||
# Check for HTTP errors
|
||||
if (httr::status_code(response) != 200) {
|
||||
return(NULL)
|
||||
}
|
||||
|
||||
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
|
||||
|
||||
if (is.null(track_data$path) || length(track_data$path) < 2) {
|
||||
return(NULL)
|
||||
}
|
||||
|
||||
route_df <- as.data.frame(track_data$path)
|
||||
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
|
||||
|
||||
if (nrow(route_df) < 3) return(NULL)
|
||||
|
||||
# Convert to meters
|
||||
lat_ref <- route_df$lat[1]
|
||||
lon_ref <- route_df$lon[1]
|
||||
meters_per_deg_lat <- 111320
|
||||
meters_per_deg_lon <- 111320 * cos(lat_ref * pi / 180)
|
||||
|
||||
x_meters <- (route_df$lon - lon_ref) * meters_per_deg_lon
|
||||
y_meters <- (route_df$lat - lat_ref) * meters_per_deg_lat
|
||||
time_seconds <- route_df$time - route_df$time[1]
|
||||
|
||||
trj <- TrajFromCoords(
|
||||
data.frame(x = x_meters, y = y_meters, time = time_seconds),
|
||||
xCol = "x", yCol = "y", timeCol = "time"
|
||||
)
|
||||
|
||||
# Calculate parameters
|
||||
duration <- TrajDuration(trj)
|
||||
path_length <- TrajLength(trj)
|
||||
diffusion_dist <- TrajDistance(trj)
|
||||
straight <- TrajStraightness(trj)
|
||||
mean_vel <- path_length / duration
|
||||
|
||||
# Fractal dimension
|
||||
fractal <- tryCatch({
|
||||
min_step <- path_length / 100
|
||||
max_step <- path_length / 2
|
||||
if (min_step > 0 && max_step > min_step) {
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}, error = function(e) NA)
|
||||
|
||||
return(data.frame(
|
||||
icao24 = icao24,
|
||||
diffusion_distance_km = diffusion_dist / 1000,
|
||||
straightness = straight,
|
||||
duration_min = duration / 60,
|
||||
mean_velocity_kmh = mean_vel * 3.6,
|
||||
fractal_dimension = fractal
|
||||
))
|
||||
|
||||
}, error = function(e) {
|
||||
message("Error processing ", icao24, ": ", e$message)
|
||||
return(NULL)
|
||||
})
|
||||
}
|
||||
|
||||
# Collect trajectory data from multiple departures
|
||||
message("Collecting trajectory data from departures...")
|
||||
all_trajectories <- list()
|
||||
|
||||
# Process available departures (limit to avoid API rate limits)
|
||||
n_departures <- min(length(departures), 20)
|
||||
|
||||
for (i in 1:n_departures) {
|
||||
dep <- departures[[i]]
|
||||
icao24 <- dep[["ICAO24"]]
|
||||
dep_time <- dep[["departure_time"]] # Use departure time directly from departures list
|
||||
|
||||
# Skip if no departure time available
|
||||
if (is.null(dep_time)) {
|
||||
message("Skipping ", icao24, ": no departure time")
|
||||
next
|
||||
}
|
||||
|
||||
params <- calculate_trajectory_params(icao24, dep_time, creds)
|
||||
if (!is.null(params)) {
|
||||
all_trajectories[[length(all_trajectories) + 1]] <- params
|
||||
message("Successfully processed trajectory for ", icao24)
|
||||
}
|
||||
|
||||
Sys.sleep(0.5) # Rate limiting
|
||||
}
|
||||
|
||||
# Combine all trajectory data
|
||||
if (length(all_trajectories) > 0) {
|
||||
trajectory_stats_df <- do.call(rbind, all_trajectories)
|
||||
message("Successfully collected ", nrow(trajectory_stats_df), " trajectories")
|
||||
print(trajectory_stats_df)
|
||||
} else {
|
||||
message("No trajectory data collected")
|
||||
}
|
||||
```
|
||||
|
||||
# Basic Statistical Analysis of Trajectory Parameters
|
||||
```{r statistical-analysis}
|
||||
if (exists("trajectory_stats_df") && nrow(trajectory_stats_df) >= 2) {
|
||||
|
||||
# Parameters to analyze
|
||||
params_to_analyze <- c("diffusion_distance_km", "straightness", "duration_min",
|
||||
"mean_velocity_kmh", "fractal_dimension")
|
||||
param_labels <- c("Diffusion Distance (km)", "Straightness Index",
|
||||
"Duration (min)", "Mean Velocity (km/h)", "Fractal Dimension")
|
||||
|
||||
# Function to calculate comprehensive statistics
|
||||
calc_stats <- function(x, param_name) {
|
||||
x <- x[!is.na(x)]
|
||||
if (length(x) < 2) return(NULL)
|
||||
|
||||
data.frame(
|
||||
Parameter = param_name,
|
||||
N = length(x),
|
||||
Mean = round(mean(x), 4),
|
||||
Variance = round(var(x), 4),
|
||||
Std_Dev = round(sd(x), 4),
|
||||
Min = round(min(x), 4),
|
||||
Q1 = round(quantile(x, 0.25), 4),
|
||||
Median = round(median(x), 4),
|
||||
Q3 = round(quantile(x, 0.75), 4),
|
||||
Max = round(max(x), 4),
|
||||
IQR = round(IQR(x), 4)
|
||||
)
|
||||
}
|
||||
|
||||
# Calculate statistics for each parameter
|
||||
stats_list <- list()
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
stats_list[[i]] <- calc_stats(trajectory_stats_df[[param]], label)
|
||||
}
|
||||
|
||||
# Combine into summary table
|
||||
stats_summary <- do.call(rbind, stats_list[!sapply(stats_list, is.null)])
|
||||
|
||||
cat("\n========== STATISTICAL SUMMARY ==========\n\n")
|
||||
print(stats_summary, row.names = FALSE)
|
||||
|
||||
# Boxplots for each parameter
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
if (length(data) >= 2) {
|
||||
boxplot(data,
|
||||
main = paste("Boxplot:", label),
|
||||
ylab = label,
|
||||
col = "lightblue",
|
||||
border = "darkblue")
|
||||
|
||||
# Add mean point
|
||||
points(1, mean(data), pch = 18, col = "red", cex = 1.5)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
|
||||
# Density plots for each parameter
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
if (length(data) >= 3) {
|
||||
dens <- density(data, na.rm = TRUE)
|
||||
plot(dens,
|
||||
main = paste("Density:", label),
|
||||
xlab = label,
|
||||
ylab = "Density",
|
||||
col = "darkblue",
|
||||
lwd = 2)
|
||||
polygon(dens, col = rgb(0, 0, 1, 0.3), border = "darkblue")
|
||||
|
||||
# Add vertical lines for mean and median
|
||||
abline(v = mean(data), col = "red", lwd = 2, lty = 2)
|
||||
abline(v = median(data), col = "green", lwd = 2, lty = 3)
|
||||
legend("topright", legend = c("Mean", "Median"),
|
||||
col = c("red", "green"), lty = c(2, 3), lwd = 2, cex = 0.7)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
|
||||
# Histogram with density overlay
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
if (length(data) >= 3) {
|
||||
hist(data,
|
||||
probability = TRUE,
|
||||
main = paste("Histogram:", label),
|
||||
xlab = label,
|
||||
col = "lightgray",
|
||||
border = "darkgray")
|
||||
|
||||
# Overlay density curve
|
||||
lines(density(data), col = "red", lwd = 2)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
|
||||
} else {
|
||||
message("Insufficient trajectory data for statistical analysis (need at least 2 trajectories)")
|
||||
}
|
||||
```
|
||||
|
||||
# Interpretation of Results
|
||||
```{r interpretation}
|
||||
if (exists("trajectory_stats_df") && nrow(trajectory_stats_df) >= 2) {
|
||||
|
||||
cat("\n========== INTERPRETATION OF TRAJECTORY PARAMETERS ==========\n\n")
|
||||
|
||||
# Diffusion Distance
|
||||
dd <- trajectory_stats_df$diffusion_distance_km[!is.na(trajectory_stats_df$diffusion_distance_km)]
|
||||
if (length(dd) >= 2) {
|
||||
cat("1. DIFFUSION DISTANCE (Net Displacement):\n")
|
||||
cat(" - Mean:", round(mean(dd), 2), "km\n")
|
||||
cat(" - This represents the straight-line distance from origin to destination.\n")
|
||||
cat(" - High variance (", round(var(dd), 2), ") indicates diverse flight distances.\n\n")
|
||||
}
|
||||
|
||||
# Straightness
|
||||
st <- trajectory_stats_df$straightness[!is.na(trajectory_stats_df$straightness)]
|
||||
if (length(st) >= 2) {
|
||||
cat("2. STRAIGHTNESS INDEX:\n")
|
||||
cat(" - Mean:", round(mean(st), 4), "(range 0-1, where 1 = perfectly straight)\n")
|
||||
cat(" - Values close to 1 indicate efficient, direct flight paths.\n")
|
||||
cat(" - Lower values suggest deviations due to weather, airspace, or routing.\n\n")
|
||||
}
|
||||
|
||||
# Duration
|
||||
dur <- trajectory_stats_df$duration_min[!is.na(trajectory_stats_df$duration_min)]
|
||||
if (length(dur) >= 2) {
|
||||
cat("3. DURATION OF TRAVEL:\n")
|
||||
cat(" - Mean:", round(mean(dur), 2), "minutes\n")
|
||||
cat(" - Range:", round(min(dur), 2), "-", round(max(dur), 2), "minutes\n")
|
||||
cat(" - IQR:", round(IQR(dur), 2), "minutes (middle 50% of flights)\n\n")
|
||||
}
|
||||
|
||||
# Velocity
|
||||
vel <- trajectory_stats_df$mean_velocity_kmh[!is.na(trajectory_stats_df$mean_velocity_kmh)]
|
||||
if (length(vel) >= 2) {
|
||||
cat("4. MEAN TRAVEL VELOCITY:\n")
|
||||
cat(" - Mean:", round(mean(vel), 2), "km/h\n")
|
||||
cat(" - Typical commercial aircraft cruise: 800-900 km/h\n")
|
||||
cat(" - Lower values may include taxi, takeoff, and landing phases.\n\n")
|
||||
}
|
||||
|
||||
# Fractal Dimension
|
||||
fd <- trajectory_stats_df$fractal_dimension[!is.na(trajectory_stats_df$fractal_dimension)]
|
||||
if (length(fd) >= 2) {
|
||||
cat("5. FRACTAL DIMENSION:\n")
|
||||
cat(" - Mean:", round(mean(fd), 4), "\n")
|
||||
cat(" - Value of 1.0 = perfectly straight line\n")
|
||||
cat(" - Values closer to 2.0 = more complex, space-filling paths\n")
|
||||
cat(" - Aircraft typically show low fractal dimension (efficient paths).\n\n")
|
||||
}
|
||||
|
||||
cat("========== END OF ANALYSIS ==========\n")
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user