♻️ refactor all logic to main.rmd
This commit is contained in:
303
src/app.Rmd
303
src/app.Rmd
@@ -1,22 +1,13 @@
|
||||
```{r backend, child="./main.Rmd"}
|
||||
source("./main.Rmd")
|
||||
exists("getRouteSummary")
|
||||
```{r backend, include=FALSE}
|
||||
# Load all functions from main.Rmd
|
||||
knitr::purl("./main.Rmd", output = tempfile(), quiet = TRUE) |> source()
|
||||
```
|
||||
|
||||
# Web Interface
|
||||
```{r shiny}
|
||||
# Flight Trajectory Analysis - Shiny GUI Application
|
||||
# This app allows interactive selection of flights and displays trajectory analysis
|
||||
|
||||
library(shiny)
|
||||
library(dplyr)
|
||||
library(lubridate)
|
||||
library(openSkies)
|
||||
library(dotenv)
|
||||
library(httr)
|
||||
library(jsonlite)
|
||||
library(trajr)
|
||||
|
||||
# All core functions are loaded from main.Rmd
|
||||
|
||||
# UI Definition
|
||||
ui <- fluidPage(
|
||||
@@ -132,6 +123,7 @@ server <- function(input, output, session) {
|
||||
status("Loading departures...")
|
||||
|
||||
tryCatch({
|
||||
# Use getCredentials from main.Rmd
|
||||
rv$creds <- getCredentials(
|
||||
client_id = input$client_id,
|
||||
client_secret = input$client_secret
|
||||
@@ -199,28 +191,18 @@ server <- function(input, output, session) {
|
||||
|
||||
rv$current_icao <- icao24
|
||||
|
||||
# Get track data
|
||||
query <- list(icao24 = icao24, time = as.numeric(dep_time))
|
||||
response <- makeAuthenticatedRequest('tracks/all', query, rv$creds)
|
||||
# Use getAircraftTrack from main.Rmd
|
||||
route_df <- getAircraftTrack(icao24, dep_time, rv$creds)
|
||||
|
||||
if (httr::status_code(response) != 200) {
|
||||
status(paste("Track data not available for", icao24, "(HTTP", httr::status_code(response), ")"))
|
||||
return()
|
||||
}
|
||||
|
||||
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
|
||||
|
||||
if (is.null(track_data$path) || length(track_data$path) < 2) {
|
||||
if (is.null(route_df) || nrow(route_df) < 2) {
|
||||
status(paste("No path data available for", icao24))
|
||||
return()
|
||||
}
|
||||
|
||||
route_df <- as.data.frame(track_data$path)
|
||||
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
|
||||
rv$current_route <- route_df
|
||||
|
||||
# Create trajectory object
|
||||
rv$current_trj <- createTrajFromRoute(route_df)
|
||||
# Use getTrajFromRoute from main.Rmd
|
||||
rv$current_trj <- getTrajFromRoute(route_df)
|
||||
status(paste("Successfully analyzed", icao24, "with", nrow(route_df), "points"))
|
||||
|
||||
# Switch to analysis tab
|
||||
@@ -256,15 +238,10 @@ server <- function(input, output, session) {
|
||||
# Characteristics table
|
||||
output$characteristics_table <- renderTable({
|
||||
req(rv$current_trj)
|
||||
|
||||
trj <- rv$current_trj
|
||||
|
||||
data.frame <- calculateRouteCharacteristics(trj)
|
||||
data.frame
|
||||
calculateTrajectoryStats(rv$current_trj, format = "table")
|
||||
})
|
||||
|
||||
# Batch analysis
|
||||
# FIXME use multiple flights from one aircraft instead of random flights of random aircrafts
|
||||
observeEvent(input$batch_analyze, {
|
||||
req(rv$departures, rv$creds)
|
||||
|
||||
@@ -284,47 +261,8 @@ server <- function(input, output, session) {
|
||||
|
||||
if (is.null(dep_time)) next
|
||||
|
||||
params <- tryCatch({
|
||||
query <- list(icao24 = icao24, time = as.numeric(dep_time))
|
||||
response <- makeAuthenticatedRequest('tracks/all', query, rv$creds)
|
||||
|
||||
if (httr::status_code(response) != 200) return(NULL)
|
||||
|
||||
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
|
||||
|
||||
if (is.null(track_data$path) || length(track_data$path) < 3) return(NULL)
|
||||
|
||||
route_df <- as.data.frame(track_data$path)
|
||||
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
|
||||
|
||||
trj <- createTrajFromRoute(route_df)
|
||||
|
||||
duration <- TrajDuration(trj)
|
||||
path_length <- TrajLength(trj)
|
||||
diffusion_dist <- TrajDistance(trj)
|
||||
straight <- TrajStraightness(trj)
|
||||
mean_vel <- path_length / duration
|
||||
|
||||
fractal <- tryCatch({
|
||||
min_step <- path_length / 100
|
||||
max_step <- path_length / 2
|
||||
if (min_step > 0 && max_step > min_step) {
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}, error = function(e) NA)
|
||||
|
||||
data.frame(
|
||||
icao24 = icao24,
|
||||
diffusion_distance_km = diffusion_dist / 1000,
|
||||
straightness = straight,
|
||||
duration_min = duration / 60,
|
||||
mean_velocity_kmh = mean_vel * 3.6,
|
||||
fractal_dimension = fractal
|
||||
)
|
||||
}, error = function(e) NULL)
|
||||
# Use calculate_trajectory_params from main.Rmd
|
||||
params <- calculate_trajectory_params(icao24, dep_time, rv$creds)
|
||||
|
||||
if (!is.null(params)) {
|
||||
all_trajectories[[length(all_trajectories) + 1]] <- params
|
||||
@@ -347,242 +285,37 @@ server <- function(input, output, session) {
|
||||
})
|
||||
})
|
||||
|
||||
# Statistics summary table
|
||||
# Statistics summary table - use calculateStatsSummary from main.Rmd
|
||||
output$stats_summary_table <- renderTable({
|
||||
req(rv$trajectory_stats_df)
|
||||
calculateStatsSummary(rv$trajectory_stats_df)
|
||||
})
|
||||
|
||||
# Boxplots
|
||||
# Boxplots - use createBoxplots from main.Rmd
|
||||
output$boxplots <- renderPlot({
|
||||
req(rv$trajectory_stats_df)
|
||||
createBoxplots(rv$trajectory_stats_df)
|
||||
})
|
||||
|
||||
# Density plots
|
||||
# Density plots - use createDensityPlots from main.Rmd
|
||||
output$density_plots <- renderPlot({
|
||||
req(rv$trajectory_stats_df)
|
||||
createDensityPlots(rv$trajectory_stats_df)
|
||||
})
|
||||
|
||||
# Histograms
|
||||
# Histograms - use createHistograms from main.Rmd
|
||||
output$histograms <- renderPlot({
|
||||
req(rv$trajectory_stats_df)
|
||||
createHistograms(rv$trajectory_stats_df)
|
||||
})
|
||||
|
||||
# Interpretation text
|
||||
# Interpretation text - use generateInterpretation from main.Rmd
|
||||
output$interpretation_text <- renderText({
|
||||
req(rv$trajectory_stats_df)
|
||||
generateInterpretation(rv$trajectory_stats_df)
|
||||
})
|
||||
}
|
||||
|
||||
# Helper function to get parameter names and labels
|
||||
getTrajectoryParams <- function() {
|
||||
list(
|
||||
params = c("diffusion_distance_km", "straightness", "duration_min",
|
||||
"mean_velocity_kmh", "fractal_dimension"),
|
||||
labels = c("Diffusion Distance (km)", "Straightness", "Duration (min)",
|
||||
"Mean Velocity (km/h)", "Fractal Dimension")
|
||||
)
|
||||
}
|
||||
|
||||
# Calculate statistics summary table
|
||||
calculateStatsSummary <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
stats_list <- lapply(seq_along(p$params), function(i) {
|
||||
x <- trajectory_stats_df[[p$params[i]]]
|
||||
x <- x[!is.na(x)]
|
||||
if (length(x) < 2) return(NULL)
|
||||
|
||||
data.frame(
|
||||
Parameter = p$labels[i],
|
||||
N = length(x),
|
||||
Mean = round(mean(x), 4),
|
||||
Variance = round(var(x), 4),
|
||||
Std_Dev = round(sd(x), 4),
|
||||
Q1 = round(quantile(x, 0.25), 4),
|
||||
Median = round(median(x), 4),
|
||||
Q3 = round(quantile(x, 0.75), 4)
|
||||
)
|
||||
})
|
||||
|
||||
do.call(rbind, stats_list[!sapply(stats_list, is.null)])
|
||||
}
|
||||
|
||||
# Create boxplots for trajectory statistics
|
||||
createBoxplots <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
par(mfrow = c(2, 3))
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 2) {
|
||||
boxplot(data, main = p$labels[i], ylab = p$labels[i], col = "lightblue", border = "darkblue")
|
||||
points(1, mean(data), pch = 18, col = "red", cex = 1.5)
|
||||
}
|
||||
}
|
||||
par(mfrow = c(1, 1))
|
||||
}
|
||||
|
||||
# Create density plots for trajectory statistics
|
||||
createDensityPlots <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
par(mfrow = c(2, 3))
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 3) {
|
||||
dens <- density(data)
|
||||
plot(dens, main = paste("Density:", p$labels[i]), xlab = p$labels[i], col = "darkblue", lwd = 2)
|
||||
polygon(dens, col = rgb(0, 0, 1, 0.3), border = "darkblue")
|
||||
abline(v = mean(data), col = "red", lwd = 2, lty = 2)
|
||||
abline(v = median(data), col = "green", lwd = 2, lty = 3)
|
||||
}
|
||||
}
|
||||
par(mfrow = c(1, 1))
|
||||
}
|
||||
|
||||
# Create histograms for trajectory statistics
|
||||
createHistograms <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
par(mfrow = c(2, 3))
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 3) {
|
||||
hist(data, probability = TRUE, main = paste("Histogram:", p$labels[i]),
|
||||
xlab = p$labels[i], col = "lightgray", border = "darkgray")
|
||||
lines(density(data), col = "red", lwd = 2)
|
||||
}
|
||||
}
|
||||
par(mfrow = c(1, 1))
|
||||
}
|
||||
|
||||
# Generate interpretation text for trajectory statistics
|
||||
generateInterpretation <- function(trajectory_stats_df) {
|
||||
df <- trajectory_stats_df
|
||||
|
||||
text <- "========== INTERPRETATION OF TRAJECTORY PARAMETERS ==========\n\n"
|
||||
|
||||
# Diffusion Distance
|
||||
dd <- df$diffusion_distance_km[!is.na(df$diffusion_distance_km)]
|
||||
if (length(dd) >= 2) {
|
||||
text <- paste0(text, "1. DIFFUSION DISTANCE (Net Displacement):\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(dd), 2), " km\n")
|
||||
text <- paste0(text, " - Represents straight-line distance from origin to destination.\n")
|
||||
text <- paste0(text, " - Variance: ", round(var(dd), 2), " (indicates diversity in flight distances)\n\n")
|
||||
}
|
||||
|
||||
# Straightness
|
||||
st <- df$straightness[!is.na(df$straightness)]
|
||||
if (length(st) >= 2) {
|
||||
text <- paste0(text, "2. STRAIGHTNESS INDEX:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(st), 4), " (range 0-1, where 1 = perfectly straight)\n")
|
||||
text <- paste0(text, " - Values close to 1 indicate efficient, direct flight paths.\n")
|
||||
text <- paste0(text, " - Lower values suggest deviations due to weather, airspace, or routing.\n\n")
|
||||
}
|
||||
|
||||
# Duration
|
||||
dur <- df$duration_min[!is.na(df$duration_min)]
|
||||
if (length(dur) >= 2) {
|
||||
text <- paste0(text, "3. DURATION OF TRAVEL:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(dur), 2), " minutes\n")
|
||||
text <- paste0(text, " - Range: ", round(min(dur), 2), " - ", round(max(dur), 2), " minutes\n")
|
||||
text <- paste0(text, " - IQR: ", round(IQR(dur), 2), " minutes (middle 50% of flights)\n\n")
|
||||
}
|
||||
|
||||
# Velocity
|
||||
vel <- df$mean_velocity_kmh[!is.na(df$mean_velocity_kmh)]
|
||||
if (length(vel) >= 2) {
|
||||
text <- paste0(text, "4. MEAN TRAVEL VELOCITY:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(vel), 2), " km/h\n")
|
||||
text <- paste0(text, " - Typical commercial aircraft cruise: 800-900 km/h\n")
|
||||
text <- paste0(text, " - Lower values may include taxi, takeoff, and landing phases.\n\n")
|
||||
}
|
||||
|
||||
# Fractal Dimension
|
||||
fd <- df$fractal_dimension[!is.na(df$fractal_dimension)]
|
||||
if (length(fd) >= 2) {
|
||||
text <- paste0(text, "5. FRACTAL DIMENSION:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(fd), 4), "\n")
|
||||
text <- paste0(text, " - Value of 1.0 = perfectly straight line\n")
|
||||
text <- paste0(text, " - Values closer to 2.0 = more complex, space-filling paths\n")
|
||||
text <- paste0(text, " - Aircraft typically show low fractal dimension (efficient paths).\n\n")
|
||||
}
|
||||
|
||||
text <- paste0(text, "========== END OF ANALYSIS ==========")
|
||||
|
||||
text
|
||||
}
|
||||
|
||||
createTrajFromRoute <- function(route_df) {
|
||||
tryCatch({
|
||||
lat_ref <- route_df$lat[1]
|
||||
lon_ref <- route_df$lon[1]
|
||||
meters_per_deg_lat <- 111320
|
||||
meters_per_deg_lon <- 111320 * cos(lat_ref * pi / 180)
|
||||
|
||||
x_meters <- (route_df$lon - lon_ref) * meters_per_deg_lon
|
||||
y_meters <- (route_df$lat - lat_ref) * meters_per_deg_lat
|
||||
time_seconds <- route_df$time - route_df$time[1]
|
||||
|
||||
trj <- TrajFromCoords(
|
||||
data.frame(x = x_meters, y = y_meters, time = time_seconds),
|
||||
xCol = "x", yCol = "y", timeCol = "time"
|
||||
)
|
||||
|
||||
return(trj)
|
||||
|
||||
}, error = function(e) {
|
||||
status(paste("Error creating trajectory object:", e$message))
|
||||
})
|
||||
}
|
||||
|
||||
calculateRouteCharacteristics <- function(trj) {
|
||||
duration <- TrajDuration(trj)
|
||||
path_length <- TrajLength(trj)
|
||||
diffusion_distance <- TrajDistance(trj)
|
||||
straightness <- TrajStraightness(trj)
|
||||
mean_velocity <- path_length / duration
|
||||
|
||||
fractal_dim <- tryCatch({
|
||||
min_step <- path_length / 100
|
||||
max_step <- path_length / 2
|
||||
if (min_step > 0 && max_step > min_step) {
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}, error = function(e) NA)
|
||||
|
||||
return (data.frame(
|
||||
Parameter = c(
|
||||
"Duration (s)", "Duration (min)",
|
||||
"Path Length (km)",
|
||||
"Duffusion Distance (m)",
|
||||
"Diffusion Distance (km)",
|
||||
"Straightness Index",
|
||||
"Mean Velocity (km/h)",
|
||||
"Fractal Dimension"
|
||||
),
|
||||
Value = c(
|
||||
duration_s = round(duration, 2),
|
||||
duration_min = round(duration / 60, 2),
|
||||
path_length_km = round(path_length / 1000, 2),
|
||||
diffusion_distance_m = round(diffusion_distance, 2),
|
||||
diffusion_distance_km = round(diffusion_distance / 1000, 2),
|
||||
straightness_index = round(straightness, 4),
|
||||
mean_velocity_kmh = round(mean_velocity *3.6, 2),
|
||||
fractal_dimension = round(fractal_dim, 4)
|
||||
)
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
# Run the application
|
||||
shinyApp(ui = ui, server = server)
|
||||
```
|
||||
454
src/main.Rmd
454
src/main.Rmd
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: "Topic 8"
|
||||
title: "Topic 8 - Flight Trajectory Analysis"
|
||||
output:
|
||||
pdf_document: default
|
||||
html_document: default
|
||||
@@ -21,6 +21,7 @@ library(dotenv)
|
||||
library(httr)
|
||||
library(jsonlite)
|
||||
library(trajr)
|
||||
library(shiny)
|
||||
```
|
||||
|
||||
# Download flights
|
||||
@@ -38,373 +39,316 @@ getFlights <- function(icao, time, creds){
|
||||
flights <-getAircraftFlights(icao, startTime = time - days(1), endTime = time, credentials = creds )
|
||||
return(flights)
|
||||
}
|
||||
icao <- departures[[1]][["ICAO24"]]
|
||||
flights <- getFlights(icao,Sys.time(), creds)
|
||||
# TODO map from all available flights to tracks
|
||||
query <- list(icao24= icao, time=as.numeric(flights[[1]][["departure_time"]]))
|
||||
|
||||
# make a manual request because this API endpoint is considered experimental
|
||||
getAircraftTrack <- function(icao, time, creds){
|
||||
query <- list(icao24= icao, time=as.numeric(time))
|
||||
response <-makeAuthenticatedRequest('tracks/all',query, creds)
|
||||
# Get aircraft track from OpenSky API
|
||||
getAircraftTrack <- function(icao, time, creds) {
|
||||
query <- list(icao24 = icao, time = as.numeric(time))
|
||||
response <- makeAuthenticatedRequest('tracks/all', query, creds)
|
||||
track_data <- fromJSON(content(response, as = "text", encoding = "UTF-8"))
|
||||
if (!is.null(track_data$path) && length(track_data$path) > 0) {
|
||||
route_df <- as.data.frame(track_data$path)
|
||||
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
|
||||
return(route_df)
|
||||
route_df <- as.data.frame(track_data$path)
|
||||
colnames(route_df) <- c("time", "lat", "lon", "alt", "heading", "on_ground")
|
||||
return(route_df)
|
||||
}
|
||||
return(NULL)
|
||||
}
|
||||
|
||||
route_df <- getAircraftTrack(icao, time=flights[[1]][["departure_time"]], creds = creds)
|
||||
if(!is.null(route_df)){
|
||||
message("Loading of route successfull! Points: ", nrow(route_df))
|
||||
|
||||
plot(route_df$lon, route_df$lat, type="o", pch=20, col="blue",
|
||||
main=paste("Geographic route of", icao),
|
||||
xlab="Longitude", ylab="Latitude")
|
||||
|
||||
plot(route_df$time, route_df$alt, type="l", col="red", lwd=2,
|
||||
main=paste("Altitude profile of", icao),
|
||||
xlab="Time (Unix)", ylab="Height (Meter)")
|
||||
} else {
|
||||
print("No path points from api")
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
# Trajectory Characteristics Analysis
|
||||
|
||||
## Distance Approximation
|
||||
```{r traj-dist}
|
||||
getRouteDistance<- function(route_df){
|
||||
# Convert lat/lon to approximate meters (using simple equirectangular projection)
|
||||
# Reference point: first coordinate
|
||||
## Trajectory Conversion Functions
|
||||
```{r trajectory-functions}
|
||||
# Convert route to distance in meters
|
||||
getRouteDistance <- function(route_df) {
|
||||
lat_ref <- route_df$lat[1]
|
||||
lon_ref <- route_df$lon[1]
|
||||
|
||||
# Convert to meters (approximate)
|
||||
meters_per_deg_lat <- 111320
|
||||
meters_per_deg_lon <- 111320 * cos(lat_ref * pi / 180)
|
||||
|
||||
x_meters <- (route_df$lon - lon_ref) * meters_per_deg_lon
|
||||
y_meters <- (route_df$lat - lat_ref) * meters_per_deg_lat
|
||||
return(list('x' = x_meters, 'y' = y_meters))
|
||||
}
|
||||
|
||||
getRouteTime <- function(route_df){
|
||||
# Get time in seconds from start
|
||||
getRouteTime <- function(route_df) {
|
||||
return(route_df$time - route_df$time[1])
|
||||
}
|
||||
|
||||
getTrajFromRoute <- function(route_df){
|
||||
# Create trajr object from route
|
||||
getTrajFromRoute <- function(route_df) {
|
||||
meters <- getRouteDistance(route_df)
|
||||
time <- getRouteTime(route_df)
|
||||
trj <- TrajFromCoords(
|
||||
data.frame(x = meters$x, y = meters$y, time = time),
|
||||
xCol = "x", yCol = "y", timeCol = "time"
|
||||
)
|
||||
return(trj)
|
||||
}
|
||||
getRouteSummary<-function(route_df, icao){
|
||||
meters <- getRouteDistance(route_df)
|
||||
x_meters <- meters$x
|
||||
y_meters <- meters$y
|
||||
time_seconds <- getRouteTime(route_df)
|
||||
|
||||
# Create trajr trajectory object
|
||||
trj <- getTrajFromRoute(route_df)
|
||||
# Calculate trajectory characteristics
|
||||
# Input: either route_df (data.frame with lat/lon) or trj (trajr object)
|
||||
# format: "row" for batch analysis (one row per flight), "table" for single flight display
|
||||
# FIXME for batch analysis: use the same aircraft
|
||||
calculateTrajectoryStats <- function(input, icao = NULL, format = "row") {
|
||||
# Determine if input is route_df or trj
|
||||
if (inherits(input, "Trajectory")) {
|
||||
trj <- input
|
||||
} else {
|
||||
trj <- getTrajFromRoute(input)
|
||||
}
|
||||
|
||||
# Calculate trajectory characteristics
|
||||
# Calculate all metrics
|
||||
duration <- TrajDuration(trj)
|
||||
path_length <- TrajLength(trj)
|
||||
diffusion_distance <- TrajDistance(trj)
|
||||
straightness <- TrajStraightness(trj)
|
||||
mean_velocity <- path_length / duration
|
||||
|
||||
# 1. Duration of travel (seconds)
|
||||
duration <- TrajDuration(trj)
|
||||
|
||||
# 2. Total path length (meters)
|
||||
path_length <- TrajLength(trj)
|
||||
|
||||
# 3. Diffusion distance (net displacement - straight line from start to end)
|
||||
diffusion_distance <- TrajDistance(trj)
|
||||
|
||||
# 4. Straightness index (ratio of net displacement to path length, 0-1)
|
||||
straightness <- TrajStraightness(trj)
|
||||
|
||||
# 5. Mean travel velocity (meters/second)
|
||||
mean_velocity <- path_length / duration
|
||||
|
||||
# 6. Fractal dimension (using divider method)
|
||||
# Note: requires sufficient points for accurate estimation
|
||||
fractal_dim <- tryCatch({
|
||||
# Calculate appropriate step sizes based on trajectory length
|
||||
min_step <- TrajLength(trj) / 100
|
||||
max_step <- TrajLength(trj) / 2
|
||||
fractal_dim <- tryCatch({
|
||||
min_step <- path_length / 100
|
||||
max_step <- path_length / 2
|
||||
if (min_step > 0 && max_step > min_step) {
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
}, error = function(e) {
|
||||
message("Could not calculate fractal dimension: ", e$message)
|
||||
} else {
|
||||
NA
|
||||
})
|
||||
}
|
||||
}, error = function(e) NA)
|
||||
|
||||
# Return format based on use case
|
||||
if (format == "table") {
|
||||
# For single flight display (Parameter | Value)
|
||||
return(data.frame(
|
||||
Parameter = c(
|
||||
"Duration (s)", "Duration (min)",
|
||||
"Path Length (km)",
|
||||
"Diffusion Distance (m)",
|
||||
"Diffusion Distance (km)",
|
||||
"Straightness Index",
|
||||
"Mean Velocity (km/h)",
|
||||
"Fractal Dimension"
|
||||
),
|
||||
Value = c(
|
||||
round(duration, 2),
|
||||
round(duration / 60, 2),
|
||||
round(path_length / 1000, 2),
|
||||
round(diffusion_distance, 2),
|
||||
round(diffusion_distance / 1000, 2),
|
||||
round(straightness, 4),
|
||||
round(mean_velocity * 3.6, 2),
|
||||
round(fractal_dim, 4)
|
||||
)
|
||||
))
|
||||
} else {
|
||||
# For batch analysis (one row per flight)
|
||||
return(data.frame(
|
||||
icao24 = icao,
|
||||
diffusion_distance_km = diffusion_distance / 1000, # meters to kilometers
|
||||
path_length_km = path_length / 1000, # meters to kilometers
|
||||
diffusion_distance_km = diffusion_distance / 1000,
|
||||
path_length_km = path_length / 1000,
|
||||
straightness = straightness,
|
||||
duration_mins = duration / 60, # seconds to minutes
|
||||
duration_min = duration / 60,
|
||||
mean_velocity_kmh = mean_velocity * 3.6,
|
||||
fractal_dimension = fractal_dim
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
print(getRouteSummary(route_df, icao))
|
||||
trj <- getTrajFromRoute(route_df)
|
||||
plot(trj, main = paste("Trajectory of", icao))
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
# Statistical Analysis of Multiple Trajectories
|
||||
```{r multi-trajectory-analysis}
|
||||
# Function to calculate trajectory characteristics for a single flight
|
||||
# Calculate trajectory parameters for a single flight
|
||||
calculate_trajectory_params <- function(icao, departure_time, creds) {
|
||||
tryCatch({
|
||||
route_df <- getAircraftTrack(icao, departure_time, creds)
|
||||
|
||||
if (is.null(route_df) || nrow(route_df) < 3) return(NULL)
|
||||
|
||||
# Fractal dimension
|
||||
fractal <- tryCatch({
|
||||
trj <- getTrajFromRoute(route_df)
|
||||
path_length <- TrajLength(trj)
|
||||
min_step <- path_length / 100
|
||||
max_step <- path_length / 2
|
||||
if (min_step > 0 && max_step > min_step) {
|
||||
step_sizes <- exp(seq(log(min_step), log(max_step), length.out = 10))
|
||||
TrajFractalDimension(trj, stepSizes = step_sizes)
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}, error = function(e) NA)
|
||||
|
||||
return(getRouteSummary(route_df, icao))
|
||||
return(calculateTrajectoryStats(route_df, icao = icao, format = "row"))
|
||||
|
||||
}, error = function(e) {
|
||||
message("Error processing ", icao, ": ", e$message)
|
||||
return(NULL)
|
||||
})
|
||||
}
|
||||
|
||||
# Collect trajectory data from multiple departures
|
||||
message("Collecting trajectory data from departures...")
|
||||
all_trajectories <- list()
|
||||
|
||||
# Process available departures (limit to avoid API rate limits)
|
||||
n_departures <- min(length(departures), 20)
|
||||
|
||||
for (i in 1:n_departures) {
|
||||
dep <- departures[[i]]
|
||||
icao24 <- dep[["ICAO24"]]
|
||||
dep_time <- dep[["departure_time"]] # Use departure time directly from departures list
|
||||
|
||||
# Skip if no departure time available
|
||||
if (is.null(dep_time)) {
|
||||
message("Skipping ", icao24, ": no departure time")
|
||||
next
|
||||
}
|
||||
|
||||
params <- calculate_trajectory_params(icao24, dep_time, creds)
|
||||
if (!is.null(params)) {
|
||||
all_trajectories[[length(all_trajectories) + 1]] <- params
|
||||
message("Successfully processed trajectory for ", icao24)
|
||||
}
|
||||
|
||||
Sys.sleep(0.5) # Rate limiting
|
||||
}
|
||||
|
||||
# Combine all trajectory data
|
||||
if (length(all_trajectories) > 0) {
|
||||
trajectory_stats_df <- do.call(rbind, all_trajectories)
|
||||
message("Successfully collected ", nrow(trajectory_stats_df), " trajectories")
|
||||
print(trajectory_stats_df)
|
||||
} else {
|
||||
message("No trajectory data collected")
|
||||
}
|
||||
```
|
||||
|
||||
# Basic Statistical Analysis of Trajectory Parameters
|
||||
```{r statistical-analysis}
|
||||
if (exists("trajectory_stats_df") && nrow(trajectory_stats_df) >= 2) {
|
||||
## Statistical Helper Functions
|
||||
```{r stat-functions}
|
||||
# Get parameter names and labels for trajectory statistics
|
||||
getTrajectoryParams <- function() {
|
||||
list(
|
||||
params = c("diffusion_distance_km", "straightness", "duration_min",
|
||||
"mean_velocity_kmh", "fractal_dimension"),
|
||||
labels = c("Diffusion Distance (km)", "Straightness", "Duration (min)",
|
||||
"Mean Velocity (km/h)", "Fractal Dimension")
|
||||
)
|
||||
}
|
||||
|
||||
# Parameters to analyze
|
||||
params_to_analyze <- c("diffusion_distance_km", "straightness", "duration_mins",
|
||||
"mean_velocity_kmh", "fractal_dimension")
|
||||
param_labels <- c("Diffusion Distance (km)", "Straightness Index",
|
||||
"Duration (min)", "Mean Velocity (km/h)", "Fractal Dimension")
|
||||
# Calculate statistics summary table
|
||||
calculateStatsSummary <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
# Function to calculate comprehensive statistics
|
||||
calc_stats <- function(x, param_name) {
|
||||
stats_list <- lapply(seq_along(p$params), function(i) {
|
||||
x <- trajectory_stats_df[[p$params[i]]]
|
||||
x <- x[!is.na(x)]
|
||||
if (length(x) < 2) return(NULL)
|
||||
|
||||
data.frame(
|
||||
Parameter = param_name,
|
||||
Parameter = p$labels[i],
|
||||
N = length(x),
|
||||
Mean = round(mean(x), 4),
|
||||
Variance = round(var(x), 4),
|
||||
Std_Dev = round(sd(x), 4),
|
||||
Min = round(min(x), 4),
|
||||
Q1 = round(quantile(x, 0.25), 4),
|
||||
Median = round(median(x), 4),
|
||||
Q3 = round(quantile(x, 0.75), 4),
|
||||
Max = round(max(x), 4),
|
||||
IQR = round(IQR(x), 4)
|
||||
Q3 = round(quantile(x, 0.75), 4)
|
||||
)
|
||||
}
|
||||
})
|
||||
|
||||
# Calculate statistics for each parameter
|
||||
stats_list <- list()
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
stats_list[[i]] <- calc_stats(trajectory_stats_df[[param]], label)
|
||||
}
|
||||
do.call(rbind, stats_list[!sapply(stats_list, is.null)])
|
||||
}
|
||||
```
|
||||
|
||||
# Combine into summary table
|
||||
stats_summary <- do.call(rbind, stats_list[!sapply(stats_list, is.null)])
|
||||
## Visualization Functions
|
||||
```{r viz-functions}
|
||||
# Create boxplots for trajectory statistics
|
||||
createBoxplots <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
cat("\n========== STATISTICAL SUMMARY ==========\n\n")
|
||||
print(stats_summary, row.names = FALSE)
|
||||
|
||||
# Boxplots for each parameter
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 2) {
|
||||
boxplot(data,
|
||||
main = paste("Boxplot:", label),
|
||||
ylab = label,
|
||||
col = "lightblue",
|
||||
border = "darkblue")
|
||||
# Add mean point
|
||||
boxplot(data, main = p$labels[i], ylab = p$labels[i], col = "lightblue", border = "darkblue")
|
||||
points(1, mean(data), pch = 18, col = "red", cex = 1.5)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
}
|
||||
|
||||
# Create density plots for trajectory statistics
|
||||
createDensityPlots <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
# Density plots for each parameter
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 3) {
|
||||
dens <- density(data, na.rm = TRUE)
|
||||
plot(dens,
|
||||
main = paste("Density:", label),
|
||||
xlab = label,
|
||||
ylab = "Density",
|
||||
col = "darkblue",
|
||||
lwd = 2)
|
||||
dens <- density(data)
|
||||
plot(dens, main = paste("Density:", p$labels[i]), xlab = p$labels[i], col = "darkblue", lwd = 2)
|
||||
polygon(dens, col = rgb(0, 0, 1, 0.3), border = "darkblue")
|
||||
|
||||
# Add vertical lines for mean and median
|
||||
abline(v = mean(data), col = "red", lwd = 2, lty = 2)
|
||||
abline(v = median(data), col = "green", lwd = 2, lty = 3)
|
||||
legend("topright", legend = c("Mean", "Median"),
|
||||
col = c("red", "green"), lty = c(2, 3), lwd = 2, cex = 0.7)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
}
|
||||
|
||||
# Create histograms for trajectory statistics
|
||||
createHistograms <- function(trajectory_stats_df) {
|
||||
p <- getTrajectoryParams()
|
||||
|
||||
# Histogram with density overlay
|
||||
par(mfrow = c(2, 3))
|
||||
|
||||
for (i in seq_along(params_to_analyze)) {
|
||||
param <- params_to_analyze[i]
|
||||
label <- param_labels[i]
|
||||
data <- trajectory_stats_df[[param]][!is.na(trajectory_stats_df[[param]])]
|
||||
|
||||
for (i in seq_along(p$params)) {
|
||||
data <- trajectory_stats_df[[p$params[i]]][!is.na(trajectory_stats_df[[p$params[i]]])]
|
||||
if (length(data) >= 3) {
|
||||
hist(data,
|
||||
probability = TRUE,
|
||||
main = paste("Histogram:", label),
|
||||
xlab = label,
|
||||
col = "lightgray",
|
||||
border = "darkgray")
|
||||
|
||||
# Overlay density curve
|
||||
hist(data, probability = TRUE, main = paste("Histogram:", p$labels[i]),
|
||||
xlab = p$labels[i], col = "lightgray", border = "darkgray")
|
||||
lines(density(data), col = "red", lwd = 2)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow = c(1, 1))
|
||||
|
||||
} else {
|
||||
message("Insufficient trajectory data for statistical analysis (need at least 2 trajectories)")
|
||||
}
|
||||
```
|
||||
|
||||
# Interpretation of Results
|
||||
```{r interpretation}
|
||||
if (exists("trajectory_stats_df") && nrow(trajectory_stats_df) >= 2) {
|
||||
# Generate interpretation text for trajectory statistics
|
||||
generateInterpretation <- function(trajectory_stats_df) {
|
||||
df <- trajectory_stats_df
|
||||
|
||||
cat("\n========== INTERPRETATION OF TRAJECTORY PARAMETERS ==========\n\n")
|
||||
text <- "========== INTERPRETATION OF TRAJECTORY PARAMETERS ==========\n\n"
|
||||
|
||||
# Diffusion Distance
|
||||
dd <- trajectory_stats_df$diffusion_distance_km[!is.na(trajectory_stats_df$diffusion_distance_km)]
|
||||
dd <- df$diffusion_distance_km[!is.na(df$diffusion_distance_km)]
|
||||
if (length(dd) >= 2) {
|
||||
cat("1. DIFFUSION DISTANCE (Net Displacement):\n")
|
||||
cat(" - Mean:", round(mean(dd), 2), "km\n")
|
||||
cat(" - This represents the straight-line distance from origin to destination.\n")
|
||||
cat(" - High variance (", round(var(dd), 2), ") indicates diverse flight distances.\n\n")
|
||||
text <- paste0(text, "1. DIFFUSION DISTANCE (Net Displacement):\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(dd), 2), " km\n")
|
||||
text <- paste0(text, " - Represents straight-line distance from origin to destination.\n")
|
||||
text <- paste0(text, " - Variance: ", round(var(dd), 2), " (indicates diversity in flight distances)\n\n")
|
||||
}
|
||||
|
||||
# Straightness
|
||||
st <- trajectory_stats_df$straightness[!is.na(trajectory_stats_df$straightness)]
|
||||
st <- df$straightness[!is.na(df$straightness)]
|
||||
if (length(st) >= 2) {
|
||||
cat("2. STRAIGHTNESS INDEX:\n")
|
||||
cat(" - Mean:", round(mean(st), 4), "(range 0-1, where 1 = perfectly straight)\n")
|
||||
cat(" - Values close to 1 indicate efficient, direct flight paths.\n")
|
||||
cat(" - Lower values suggest deviations due to weather, airspace, or routing.\n\n")
|
||||
text <- paste0(text, "2. STRAIGHTNESS INDEX:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(st), 4), " (range 0-1, where 1 = perfectly straight)\n")
|
||||
text <- paste0(text, " - Values close to 1 indicate efficient, direct flight paths.\n")
|
||||
text <- paste0(text, " - Lower values suggest deviations due to weather, airspace, or routing.\n\n")
|
||||
}
|
||||
|
||||
# Duration
|
||||
dur <- trajectory_stats_df$duration_min[!is.na(trajectory_stats_df$duration_min)]
|
||||
dur <- df$duration_min[!is.na(df$duration_min)]
|
||||
if (length(dur) >= 2) {
|
||||
cat("3. DURATION OF TRAVEL:\n")
|
||||
cat(" - Mean:", round(mean(dur), 2), "minutes\n")
|
||||
cat(" - Range:", round(min(dur), 2), "-", round(max(dur), 2), "minutes\n")
|
||||
cat(" - IQR:", round(IQR(dur), 2), "minutes (middle 50% of flights)\n\n")
|
||||
text <- paste0(text, "3. DURATION OF TRAVEL:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(dur), 2), " minutes\n")
|
||||
text <- paste0(text, " - Range: ", round(min(dur), 2), " - ", round(max(dur), 2), " minutes\n")
|
||||
text <- paste0(text, " - IQR: ", round(IQR(dur), 2), " minutes (middle 50% of flights)\n\n")
|
||||
}
|
||||
|
||||
# Velocity
|
||||
vel <- trajectory_stats_df$mean_velocity_kmh[!is.na(trajectory_stats_df$mean_velocity_kmh)]
|
||||
vel <- df$mean_velocity_kmh[!is.na(df$mean_velocity_kmh)]
|
||||
if (length(vel) >= 2) {
|
||||
cat("4. MEAN TRAVEL VELOCITY:\n")
|
||||
cat(" - Mean:", round(mean(vel), 2), "km/h\n")
|
||||
cat(" - Typical commercial aircraft cruise: 800-900 km/h\n")
|
||||
cat(" - Lower values may include taxi, takeoff, and landing phases.\n\n")
|
||||
text <- paste0(text, "4. MEAN TRAVEL VELOCITY:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(vel), 2), " km/h\n")
|
||||
text <- paste0(text, " - Typical commercial aircraft cruise: 800-900 km/h\n")
|
||||
text <- paste0(text, " - Lower values may include taxi, takeoff, and landing phases.\n\n")
|
||||
}
|
||||
|
||||
# Fractal Dimension
|
||||
fd <- trajectory_stats_df$fractal_dimension[!is.na(trajectory_stats_df$fractal_dimension)]
|
||||
fd <- df$fractal_dimension[!is.na(df$fractal_dimension)]
|
||||
if (length(fd) >= 2) {
|
||||
cat("5. FRACTAL DIMENSION:\n")
|
||||
cat(" - Mean:", round(mean(fd), 4), "\n")
|
||||
cat(" - Value of 1.0 = perfectly straight line\n")
|
||||
cat(" - Values closer to 2.0 = more complex, space-filling paths\n")
|
||||
cat(" - Aircraft typically show low fractal dimension (efficient paths).\n\n")
|
||||
text <- paste0(text, "5. FRACTAL DIMENSION:\n")
|
||||
text <- paste0(text, " - Mean: ", round(mean(fd), 4), "\n")
|
||||
text <- paste0(text, " - Value of 1.0 = perfectly straight line\n")
|
||||
text <- paste0(text, " - Values closer to 2.0 = more complex, space-filling paths\n")
|
||||
text <- paste0(text, " - Aircraft typically show low fractal dimension (efficient paths).\n\n")
|
||||
}
|
||||
|
||||
cat("========== END OF ANALYSIS ==========\n")
|
||||
text <- paste0(text, "========== END OF ANALYSIS ==========")
|
||||
text
|
||||
}
|
||||
```
|
||||
|
||||
# Example Usage (Demo)
|
||||
```{r demo, eval=FALSE}
|
||||
# This section shows how to use the functions above
|
||||
# Set eval=TRUE to run this demo
|
||||
|
||||
# Get credentials
|
||||
creds <- getCredentials()
|
||||
|
||||
# Get departures from Frankfurt airport
|
||||
time_now <- Sys.time()
|
||||
departures <- getAirportDepartures(
|
||||
airport = "EDDF",
|
||||
startTime = time_now - hours(1),
|
||||
endTime = time_now,
|
||||
credentials = creds
|
||||
)
|
||||
|
||||
# Get first departure's track
|
||||
if (length(departures) > 0) {
|
||||
icao <- departures[[1]][["ICAO24"]]
|
||||
dep_time <- departures[[1]][["departure_time"]]
|
||||
|
||||
route_df <- getAircraftTrack(icao, dep_time, creds)
|
||||
|
||||
if (!is.null(route_df)) {
|
||||
# Plot route
|
||||
plot(route_df$lon, route_df$lat, type = "o", pch = 20, col = "blue",
|
||||
main = paste("Geographic route of", icao),
|
||||
xlab = "Longitude", ylab = "Latitude")
|
||||
|
||||
# Plot altitude
|
||||
plot(route_df$time, route_df$alt, type = "l", col = "red", lwd = 2,
|
||||
main = paste("Altitude profile of", icao),
|
||||
xlab = "Time (Unix)", ylab = "Height (Meter)")
|
||||
|
||||
# Get summary
|
||||
print(getRouteSummary(route_df, icao))
|
||||
|
||||
# Plot trajectory
|
||||
trj <- getTrajFromRoute(route_df)
|
||||
plot(trj, main = paste("Trajectory of", icao))
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user