diff --git a/src/main.Rmd b/src/main.Rmd index 3e9e2c7..d3b14d3 100644 --- a/src/main.Rmd +++ b/src/main.Rmd @@ -80,6 +80,7 @@ library(shiny) # Implementation The following section will demonstrate the implementation of the methodology using R code snippets. + The full analysis is also available in the `shiny` web interface. ## API Authentication @@ -93,6 +94,7 @@ to [eneller/openSkies](https://github.com/eneller/openSkies/) and made several [pull request](https://github.com/Rafael-Ayala/openSkies/pull/4). Our contributions include refactoring and streamlining authenticated requests to use the `makeAuthenticatedRequest()` function used below and store the token obtained by initial authentication in a `credentials` object obtained from the new `getCredentials()` function. + We further adjusted the front-facing functions to accept either _username + password_ or _client ID + secret_ where applicable using the new credentials object. @@ -210,6 +212,7 @@ if (!is.null(route_df)) { cat("Insufficient data for altitude analysis\n") } ``` + # Results ## Trajectory Metrics @@ -357,6 +360,8 @@ if (length(departures) > 0) { The following table presents computed metrics for all successfully analyzed flights. ```{r demo-all-stats-table, purl=FALSE, echo=FALSE} +# FIXME we should display several flights from the same aircraft as stated in the requirements +# not different aircraft's flights if (!is.null(all_flights_stats)) { display_stats <- all_flights_stats display_stats$diffusion_distance_km <- round(display_stats$diffusion_distance_km, 2) @@ -383,9 +388,6 @@ such as - standard deviation - interquartile range ```{r trajectory-summary} -# Statistical Helper Functions - -# Get parameter names and labels for trajectory statistics getTrajectoryParams <- function() { list( params = c("diffusion_distance_km", "straightness", "duration_min", @@ -407,12 +409,12 @@ calculateStatsSummary <- function(trajectory_stats_df) { data.frame( Parameter = p$labels[i], N = length(x), - Mean = round(mean(x), 4), - Variance = round(var(x), 4), - Std_Dev = round(sd(x), 4), - Q1 = round(quantile(x, 0.25), 4), - Median = round(median(x), 4), - Q3 = round(quantile(x, 0.75), 4) + Mean = round(mean(x), 1), + Variance = round(var(x), 1), + Std_Dev = round(sd(x), 1), + Q1 = round(quantile(x, 0.25), 1), + Median = round(median(x), 1), + Q3 = round(quantile(x, 0.75), 1) ) }) @@ -424,6 +426,7 @@ calculateStatsSummary <- function(trajectory_stats_df) { The `calculateStatsSummary()` function computes central tendency and dispersion measures for each trajectory parameter. ```{r demo-summary-stats, purl=FALSE, echo=FALSE} +# FIXME first table column broken if (!is.null(all_flights_stats) && nrow(all_flights_stats) >= 2) { summary_stats <- calculateStatsSummary(all_flights_stats) knitr::kable(summary_stats, caption = "Descriptive Statistics Summary")