## Laboratory exercise 9 rm(list=ls()) library(leaflet) library(sf) library(DataExplorer) library(lubridate) setwd('E://') pnt_data <- read.csv('rec.csv',header = FALSE, sep='',skip=15) #Time instants reformatting doy <- yday(pnt_data$V1) res1 <- ymd_hms(paste(pnt_data$V1,pnt_data$V2, sep=' ')) hour <- hour(res1) min <- minute(res1) sec <- second(res1) timer <- doy + hour/24 + min/(24*60) + sec/(24*3600) latitude <- (pnt_data$V3 + 12.843697222222223)*6378137*pi/180 longitude <- (pnt_data$V4 - 131.13274444444443)*6378137*pi/180 height <- pnt_data$V5 - 125.1 data <- as.data.frame(cbind(longitude, latitude, height)) summary(data) plot(timer, latitude, type='l', col = 'red', ylim = c(min(latitude, longitude,height), max(latitude, longitude,height)), xlab='time [day in 2015]',ylab='errors [m]') lines(timer, longitude, col= 'dark green') lines(timer, height, col= 'blue') legend('topright', legend=c('latitude', 'longitude','height'), col=c('red','dark green', 'blue'), lty=1:1, cex=0.8, box.lty=0) plot_histogram(data) plot_correlation(data, maxcat = 5L) plot_boxplot(data, by = "height") boxplot(data, names=c('easting [m]', 'northing [m]', 'height [m]'), ylab='# of occurences', main='GPS only') # Define the coordinates lat2 <- -12.844 lon2 <- 131.133 # Create a spatial object from the data frame lon = lon2 lat = lat2 points <- st_as_sf(data.frame(lon= lon, lat = lat), coords = c("lon", "lat")) #, #crs = 4326) # Add tiles to the map map <- leaflet(points) %>% addTiles() %>% # Add markers for the two points with popup labels addMarkers(lng = ~lon, lat = ~lat, popup = ~paste("Point", round(lat), round(lon))) map